Cell-attached recording is extensively used to study the firing rate of mammalian neurons, but potential limitations of the method have not been investigated in detail. Here we perform cell-attached recording of molecular layer interneurons in cerebellar slices from rats and mice, and we study how experimental conditions influence the measured firing rate. We find that this rate depends on time in cell-attached mode, on pipette potential, and on pipette ionic composition. In the first minute after sealing, action currents are variable in shape and size, presumably reflecting membrane instability. The firing rate remains approximately constant during the first 4 min after sealing and gradually increases afterward. Making the pipette potential more positive leads to an increase in the firing rate, with a steeper dependence on voltage if the pipette solution contains K(+) as the main cation than if it contains Na(+). Ca(2+) imaging experiments show that establishing a cell-attached recording can result in an increased somatic Ca(2+) concentration, reflecting an increased firing rate linked to an increase in the pipette-cell conductance. Pipette effects on cell firing are traced to a combination of passive electrical coupling, opening of voltage- and Ca(2+)-sensitive K(+) channels (BK channels) after action potentials, and random activation of voltage-insensitive, presumably mechanosensitive, cationic channels. We conclude that, unless experimental conditions are optimized, cell-attached recordings in small neurons may report erroneous firing rates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622012PMC
http://dx.doi.org/10.1523/JNEUROSCI.5371-11.2012DOI Listing

Publication Analysis

Top Keywords

firing rate
24
cell-attached recording
16
experimental conditions
8
pipette potential
8
rate
7
firing
7
cell-attached
6
pipette
5
measuring firing
4
rate high-resistance
4

Similar Publications

Electrical fires pose significant threats to the lives and property safety of people. Although utilizing coatings to impart conductivity and flame retardancy to materials is convenient and reliable, traditional layer-by-layer preparation methods have the limitations of cost, convenience and scalability. Therefore, a single-layer coating that simultaneously imparts excellent conductivity and flame retardancy to materials presents broader application prospects.

View Article and Find Full Text PDF

Activation of the brain-penetrant beta3-adrenergic receptor (Adrb3) is implicated in the treatment of depressive disorders. Enhancing GABAergic inputs from interneurons onto pyramidal cells of prefrontal cortex (PFC) represents a strategy for antidepressant therapies. Here, we probed the effects of the activation of Adrb3 on GABAergic transmission onto pyramidal neurons in the PFC using in vitro electrophysiology.

View Article and Find Full Text PDF

Background: Numerous studies have assessed the risk of SARS-CoV-2 exposure and infection among health care workers during the pandemic. However, far fewer studies have investigated the impact of SARS-CoV-2 on essential workers in other sectors. Moreover, guidance for maintaining a safely operating workplace in sectors outside of health care remains limited.

View Article and Find Full Text PDF

Protocol for recording physiological signals from the human cerebellum using electroencephalography.

STAR Protoc

January 2025

Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY 10032, USA. Electronic address:

As Purkinje cells of the cerebellum have a very fast firing rate, techniques with high temporal resolution are required to capture cerebellar physiology. Here, we present a protocol to record physiological signals in humans using cerebellar electroencephalography (cEEG). We describe steps for electrode placement and recording.

View Article and Find Full Text PDF

Severe bradycardia in patients with obstructive sleep apnoea and good early response to CPAP.

Sleep Breath

January 2025

Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Prądnicka 80, Kraków, 31-202, Poland.

Background: Obstructive sleep apnoea (OSA) may lead to heart rhythm abnormalities including bradycardia. Our aim was to ascertain clinical and echocardiographic parameters in patients with OSA in whom severe bradycardia was detected in an outpatient setting, as well as to evaluate the efficacy of CPAP therapy on heart rate normalization at the early stages of treatment.

Methods: Fifteen patients mild, moderate or severe OSA and concomitant bradycardia were enrolled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!