A highly efficient, ultralarge-area nanolithography that integrates block-copolymer lithography with single-step ZnO nanoimprinting is introduced. The UV-assisted imprinting of a photosensitive sol-gel precursor creates large-area ZnO topographic patterns with various pattern shapes in a single-step process. This straightforward approach provides a smooth line edge and high thermal stability of the imprinted ZnO pattern; these properties are greatly advantageous for further graphoepitaxial block-copolymer assembly. According to the ZnO pattern shape and depth, the orientation and lateral ordering of self-assembled cylindrical nanodomains in block-copolymer thin films could be directed in a variety of ways. Significantly, the subtle tunability of ZnO trench depth enabled by nanoimprinting, generated complex hierarchical nanopatterns, where surface-parallel and surface-perpendicular nanocylinder arrays are alternately arranged. The stability of this complex morphology is confirmed by self-consistent field theory (SCFT) calculations. The highly ordered graphoepitaxial nanoscale assembly achieved on transparent semiconducting ZnO substrates offers enormous potential for photonics and optoelectronics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201101960DOI Listing

Publication Analysis

Top Keywords

single-step zno
8
zno nanoimprinting
8
zno pattern
8
zno
7
graphoepitaxy block-copolymer
4
block-copolymer self-assembly
4
self-assembly integrated
4
integrated single-step
4
nanoimprinting highly
4
highly efficient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!