Synthesis of C8-arylamine-modified 2'-deoxyadenosine phosphoramidites and their site-specific incorporation into oligonucleotides.

Chembiochem

Organic Chemistry, Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany.

Published: March 2012

AI Article Synopsis

Article Abstract

Adducts of C8-(N-acetyl)-arylamines and 2'-deoxyadenosine were synthesised by palladium-catalysed C--N cross-coupling chemistry. These 2'-dA adducts were converted into the corresponding 3'-phosphoramidites and site-specifically incorporated into DNA oligonucleotides, which were characterised by mass spectrometry, UV thermal-stability assays and circular dichroism. These modified oligonucleotides were also used in EcoRI restriction assays and in primer-extension studies with three different DNA polymerases. The incorporation of the 2'-dA lesion close to the EcoRI restriction site dramatically reduced the susceptibility of the DNA strand to cleavage; this indicates a significant local distortion of the DNA double helix. The incorporation of the acetylated C8-2'-dA-phosphoramidites into 20-mer oligonucleotides failed, however, because the N-acetyl group was lost during the deprotection process. Instead the corresponding C8-NH-2'-dA-modified oligonucleotides were obtained. The effect of the C8-NH-arylamine-dA lesion on the replication by DNA polymerases was clearly dependent both on the polymerase used and on the arylamine-dA damage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.201100573DOI Listing

Publication Analysis

Top Keywords

ecori restriction
8
dna polymerases
8
oligonucleotides
5
dna
5
synthesis c8-arylamine-modified
4
c8-arylamine-modified 2'-deoxyadenosine
4
2'-deoxyadenosine phosphoramidites
4
phosphoramidites site-specific
4
site-specific incorporation
4
incorporation oligonucleotides
4

Similar Publications

Peptide Inhibitor Assay for Allocating Functionally Important Accessible Sites Throughout a Protein Chain: Restriction Endonuclease EcoRI as a Model Protein System.

BioTech (Basel)

December 2024

The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan.

Functionally important amino acid sequences in proteins are often located at multiple sites. Three-dimensional structural analysis and site-directed mutagenesis may be performed to allocate functional sites for understanding structure‒function relationships and for developing novel inhibitory drugs. However, such methods are too demanding to comprehensively cover potential functional sites throughout a protein chain.

View Article and Find Full Text PDF

Isolation and characterization of ɸEcM-vB1 bacteriophage targeting multidrug-resistant Escherichia coli.

BMC Res Notes

January 2025

Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.

Objectives: The aim of this study is to screen for, isolate and characterize a bacteriophage designated ɸEcM-vB1 with confirmed lytic activity against multidrug-resistant (MDR) E. coli. Methods done in this research are bacteriophage isolation, purification, titer determination, bacteriophage morphology, host range determination, bacteriophage latent period and burst size determination, genomic analysis by restriction enzymes, and bacteriophage total protein content determination.

View Article and Find Full Text PDF

DNA-modifying enzymes are crucial in biological processes and have significant clinical implications. Traditional quantification methods often overlook enzymatic activity, the true determinants of enzymes' functions. We present hydrogel Bead-based Isothermal Detection (BEAD-ID), utilizing uniform hydrogel bead-based microreactors to evaluate DNA-modifying enzyme activity on-bead.

View Article and Find Full Text PDF

Background: Interferon-beta (IFN-β) is a cytokine with a wide range of biological and pharmaceutical applications, including multiple sclerosis (MS), cancer, some autoimmune disorders, and viral infectious diseases. Thus, many studies have been performed to develop novel strategies for the high-yield production of functional IFN-β in a cost-effective approach. Here, we aimed to improve the intracellular expression of IFN-β-1a in .

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a complex nosocomial infectious agent responsible for numerous illnesses, with its growing resistance variations complicating treatment development. Studies have emphasized the importance of virulence factors OprE and OprF in pathogenesis, highlighting their potential as vaccine candidates. In this study, B-cell, MHC-I, and MHC-II epitopes were identified, and molecular linkers were active to join these epitopes with an appropriate adjuvant to construct a vaccine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!