Pharmacokinetic (PK)-pharmacodynamic modeling and simulation were used to establish a link between methadone dose, concentrations, and Fridericia rate-corrected QT (QTcF) interval prolongation, and to identify a dose that was associated with increased risk of developing torsade de pointes. A linear relationship between concentration and QTcF described the data from five clinical trials in patients on methadone maintenance treatment (MMT). A previously published population PK model adequately described the concentration-time data, and this model was used for simulation. QTcF was increased by a mean (90% confidence interval (CI)) of 17 (12, 22) ms per 1,000 ng/ml of methadone. Based on this model, doses >120 mg/day would increase the QTcF interval by >20 ms. The model predicts that 1-3% of patients would have ΔQTcF >60 ms, and 0.3-2.0% of patients would have QTcF >500 ms at doses of 160-200 mg/day. Our predictions are consistent with available observational data and support the need for electrocardiogram (ECG) monitoring and arrhythmia risk factor assessment in patients receiving methadone doses >120 mg/day.

Download full-text PDF

Source
http://dx.doi.org/10.1038/clpt.2011.273DOI Listing

Publication Analysis

Top Keywords

modeling simulation
8
data clinical
8
clinical trials
8
qtcf interval
8
doses >120
8
>120 mg/day
8
methadone
5
patients
5
qtcf
5
simulation approach
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!