Microcystin-LR and chemically degraded microcystin-LR electrochemical oxidation.

Analyst

Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal.

Published: April 2012

Microcystins (MCs) are cyclic hepatotoxic heptapeptides produced by certain strains of freshwater cyanobacteria toxic for humans and animals. The electrochemical behaviour of microcystin-LR (MC-LR) at a glassy carbon electrode (GCE) was investigated using cyclic voltammetry (CV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV). The oxidation of MC-LR is a diffusion-controlled irreversible and pH-independent process that occurs with the transfer of only one electron and does not involve the formation of any electroactive oxidation product. Upon incubation in different pH electrolytes, homogeneous degradation of MC-LR in solution was electrochemically detected by the appearance of a new oxidation peak at a lower potential. The electrochemical behaviour of chemically degraded MC-LR is an irreversible, pH-dependent process, and involves the formation of two redox products that undergo reversible oxidation. The formation of degradation products of MC-LR was confirmed by HPLC with UV detection at room temperature. Experiments were also carried out in solutions containing constituent MC-LR amino acids, which enabled the understanding of the MC-LR electron transfer reaction and degradation. An oxidation mechanism for MC-LR is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2an16017jDOI Listing

Publication Analysis

Top Keywords

chemically degraded
8
electrochemical behaviour
8
mc-lr
8
oxidation
6
microcystin-lr chemically
4
degraded microcystin-lr
4
microcystin-lr electrochemical
4
electrochemical oxidation
4
oxidation microcystins
4
microcystins mcs
4

Similar Publications

This study investigated the potential genotoxic and carcinogenic effects of N-nitrosodimethylamine (NDMA), a hazardous compound found in ranitidine formulations that are used to treat excessive stomach acid. The study first examined the effects of NDMA-contaminated ranitidine formulation on Allium cepa root growth and mitotic activity. The results demonstrated dose-dependent decreases in both root growth and mitotic index indicating genotoxicity and cell division disruption.

View Article and Find Full Text PDF

Imaging phenotype reveals that disulfirams induce protein insolubility in the mitochondrial matrix.

Sci Rep

December 2024

Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, 422-8526, Shizuoka, Japan.

The cell painting assay is useful for understanding cellular phenotypic changes and drug effects. To identify other aspects of well-known chemicals, we screened 258 compounds with the cell painting assay and focused on a mitochondrial punctate phenotype seen with disulfiram. To elucidate the reason for this punctate phenotype, we looked for clues by examining staining steps and gene knockdown as well as examining protein solubility and comparing cell lines.

View Article and Find Full Text PDF

Metabolic profiling reveals altered amino acid and fatty acid metabolism in children with Williams Syndrome.

Sci Rep

December 2024

Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Children's Regional Medical Center, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang Province, China.

Williams Syndrome (WS) is a rare neurodevelopmental disorder with a prevalence of 1 in 7500 to 1 in 20,000 individuals, caused by a microdeletion in chromosome 7q11.23. Despite its distinctive clinical features, the underlying metabolic alterations remain largely unexplored.

View Article and Find Full Text PDF

Chronic pain and restricted mobility, hallmark features of rheumatic diseases, substantially affect patients' quality of life, often resulting in physical disability and emotional distress. Given the long-term nature of these conditions, there is a growing interest in complementary therapeutic approaches, emphasizing the need to explore non-pharmacological treatments. Hydrotherapy, balneotherapy, and mud therapy have emerged as effective interventions to alleviate pain, reduce inflammation, improve joint mobility, and enhance overall physical and mental well-being.

View Article and Find Full Text PDF

Hydrothermal biochar has demonstrated potential in enhancing crop growth by improving soil properties and microbial activity; however, its effectiveness varies with application rate, with excessive amounts potentially inhibiting plant growth. This study employed a pot experiment approach to compare varying application rates of hydrothermal biochar (ranging from 0 to 50 t/ha) and to analyze its effects on alfalfa biomass, photosynthetic efficiency, soil nutrient content, and microbial community composition. Biochar application increased alfalfa dry weight by 12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!