Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study we introduce the implementation of rapid temperature pulses for selectivity tuning in capillary liquid chromatography. Short temperature pulses improved resolution in discrete sections of chromatograms, demonstrated for ion-exchange chromatography (IC) and hydrophilic interaction chromatography (HILIC) modes. Using a resistively heated column module capable of accurate and rapid temperature changes, this concept is first illustrated with separations of small anions by IC using a packed capillary column as well as a series of nucleobases and nucleosides by HILIC using a silica monolithic column with zwitterionic functionality (ZIC-HILIC). Both positive (increasing temperature) and negative temperature pulses are demonstrated to produce significant changes in selectivity and are useful approaches for improving resolution between coeluted compounds. The approach was shown to be reproducible over a large number of replicates. Finally, the use of temperature gradients as well as other complex temperature profiles was also examined for both IC and HILIC separations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac300161b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!