Widespread atypical mitochondrial DNA structure in isopods (Crustacea, Peracarida) related to a constitutive heteroplasmy in terrestrial species.

Genome

Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 40 Avenue du Recteur Pineau, 86022 Poitiers CEDEX, France.

Published: March 2012

Metazoan mitochondrial DNA (mtDNA) is generally composed of circular monomeric molecules. However, a few exceptions do exist and among them two terrestrial isopods Armadillidium vulgare and Porcellionides pruinosus have an atypical mtDNA composed of linear monomers associated with circular "head-to-head" dimers: a very unusual structure for animal mtDNA genome. To assess the distribution of this atypical mtDNA among isopods, we performed RFLP and Southern blot analyses on mtDNA of 16 terrestrial (Oniscidea family) and two aquatic isopod species: the marine Sphaeroma serratum (suborder Flabellifera, sister group of Oniscidea) and the freshwater Asellus aquaticus (Asellota, early derived taxon of isopod). The atypical mtDNA structure was observed in 15 terrestrial isopod species and A. aquaticus, suggesting a wide distribution of atypical mtDNA among isopods. However, a typical metazoan mtDNA structure was detected in the marine isopod S. serratum and the Oniscidea Ligia oceanica . Our results suggest two possible scenarios: an early origin of the atypical mtDNA in isopods followed by reversion to the typical ancestral mtDNA structure for several species, or a convergent appearance of the atypical mtDNA structure in two isopod suborders. We compare this distribution of the atypical mtDNA structure with the presence of a heteroplasmy also observed in the mtDNA of several terrestrial isopod species. We discuss if this transmitted heteroplasmy is vectored by the atypical mtDNA and its impact on the maintenance of the atypical mtDNA in isopods.

Download full-text PDF

Source
http://dx.doi.org/10.1139/g2012-008DOI Listing

Publication Analysis

Top Keywords

atypical mtdna
36
mtdna structure
20
mtdna isopods
16
mtdna
15
distribution atypical
12
isopod species
12
atypical
9
mitochondrial dna
8
mtdna terrestrial
8
terrestrial isopod
8

Similar Publications

Demethylzeylasteral inhibits oxidative phosphorylation complex biogenesis by targeting LRPPRC in lung cancer.

J Cancer

January 2025

Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, PR China.

Targeted inhibition of mitochondrial oxidative phosphorylation (OXPHOS) complex generation is an emerging and promising cancer treatment strategy, but limited targets and specific inhibitors have been reported. Leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) is an atypical RNA-binding protein that regulates the stability of all 13 mitochondrial DNA-encoded mRNA (mt-mRNA) and thus participates in the synthesis of the OXPHOS complex. LRPPRC is also a prospective therapeutic target for lung adenocarcinoma, serving as a promising target for OXPHOS inhibition.

View Article and Find Full Text PDF

Comparative mitogenomic analysis and phylogeny of Veneridae with doubly uniparental inheritance.

Open Biol

November 2024

Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, People's Republic of China.

Doubly uniparental inheritance (DUI) is an atypical animal mtDNA inheritance system, reported so far only in bivalve species, in which two mitochondrial lineages exist: one transmitted through the egg (F-type) and the other through the sperm (M-type). Although numerous species exhibit this unusual organelle inheritance, it is primarily documented in marine and freshwater mussels. The distribution, function and molecular evolutionary implications of DUI in the family Veneridae, however, remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Mell 1913 is a butterfly species unique to China, primarily found in forest canopies, and its mitochondrial genome has been sequenced, revealing a typical butterfly gene arrangement.
  • The mitochondrial genome comprises 13 protein-coding genes, 22 tRNAs, and 2 rRNAs, with notable aspects such as atypical start codons and completing stop codons inferred from the mRNA.
  • Phylogenetic analysis indicates that Mell 1913's mitogenome is closely related to other butterflies in the Coliadinae subfamily, supporting some previous molecular studies while challenging a morphology-based hypothesis on its relationships.
View Article and Find Full Text PDF
Article Synopsis
  • Cylicostephanus longibursatus is a common parasitic nematode affecting equines, potentially causing serious health issues or death in infected hosts.
  • The study sequenced its complete mitochondrial genome, revealing it is a double-stranded, 13,807-bp molecule with a high AT content of 76%, containing 12 protein-coding genes, 22 tRNA genes, and 2 rRNA genes.
  • Phylogenetic analysis showed that C. longibursatus is genetically closer to Cyathostomum than to other species within the Cylicostephanus genus, providing insights for further research on nematode classification and relationships.
View Article and Find Full Text PDF
Article Synopsis
  • - Mitochondrial diabetes mellitus (MDM) is a rare type of diabetes caused by mitochondrial dysfunction, leading to varied symptoms that can be easily misdiagnosed; accurate diagnosis is vital for effective treatment and case reporting.
  • - A young woman with sensorineural hearing loss was diagnosed with MDM after genetic testing revealed a specific mitochondrial DNA mutation (A3243G) and a family history of similar health issues.
  • - The case emphasizes the importance of recognizing MDM's unusual clinical signs, the role of thorough physical examinations and genetic testing, and the need for clinicians to be aware of MDM to avoid misdiagnosis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!