The toxicology and immunology of detergent enzymes.

J Immunotoxicol

DABMEB Consultancy Ltd , Sharnbrook, Bedfordshire MK44 1PR, UK.

Published: December 2012

Detergent enzymes have a very good safety profile, with almost no capacity to generate adverse acute or chronic responses in humans. The exceptions are the limited ability of some proteases to produce irritating effects at high concentrations, and the intrinsic potential of these bacterial and fungal proteins to act as respiratory sensitizers, demonstrated in humans during the early phase of the industrial use of enzymes during the 1960s and 1970s. How enzymes generate these responses are beginning to become a little clearer, with a developing appreciation of the cell surface mechanism(s) by which the enzymatic activity promotes the T-helper (T(H))-2 cell responses, leading to the generation of IgE. It is a reasonable assumption that the majority of enzyme proteins possess this intrinsic hazard. However, toxicological methods for characterizing further the respiratory sensitization hazard of individual enzymes remains a problematic area, with the consequence that the information feeding into risk assessment/management, although sufficient, is limited. Most of this information was in the past generated in animal models and in vitro immunoassays that assess immunological cross-reactivity. Ultimately, by understanding more fully the mechanisms which drive the IgE response to enzymes, it will be possible to develop better methods for hazard characterization and consequently for risk assessment and management.

Download full-text PDF

Source
http://dx.doi.org/10.3109/1547691X.2012.659358DOI Listing

Publication Analysis

Top Keywords

detergent enzymes
8
enzymes
6
toxicology immunology
4
immunology detergent
4
enzymes detergent
4
enzymes good
4
good safety
4
safety profile
4
profile capacity
4
capacity generate
4

Similar Publications

Structures of methane and ammonia monooxygenases in native membranes.

Proc Natl Acad Sci U S A

January 2025

Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL 60208.

Methane- and ammonia-oxidizing bacteria play key roles in the global carbon and nitrogen cycles, respectively. These bacteria use homologous copper membrane monooxygenases to accomplish the defining chemical transformations of their metabolisms: the oxidations of methane to methanol by particulate methane monooxygenase (pMMO) and ammonia to hydroxylamine by ammonia monooxygenase (AMO), enzymes of prime interest for applications in mitigating climate change. However, investigations of these enzymes have been hindered by the need for disruptive detergent solubilization prior to structure determination, confounding studies of pMMO and precluding studies of AMO.

View Article and Find Full Text PDF

Membrane-embedded CdaA is required for efficient synthesis of second messenger cyclic di-AMP.

Commun Biol

December 2024

Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 3, Groningen, The Netherlands.

Cyclic di-adenylate monophosphate (cyclic di-AMP) is an important second messenger in microorganisms. Cyclic di-AMP regulates bacterial cell volume and turgor via control of potassium and compatible solute transport but is also involved in many other processes, including the activation of the metazoan innate immune response to bacterial infections. We compare the activity of full-length membrane-embedded CdaA, the enzyme that synthesizes cyclic di-AMP, with the water-soluble catalytic domain CdaA-DAC.

View Article and Find Full Text PDF

Paper mulberry () is a high-quality silage protein feed material that can help address feed shortages and support livestock development. Although some studies have investigated the relationships between microbial communities and silage quality, these relationships and the underlying community assembly processes remain complex, requiring further research to clarify them. Additionally, limited research has explored the relationship between microbial community fermentation functions and silage quality.

View Article and Find Full Text PDF

Developing intranasal vaccines against pandemics and devastating airborne infectious diseases is imperative. The superiority of intranasal vaccines over injectable systemic vaccines is evident, but developing effective intranasal vaccines presents significant challenges. Fusing a protein antigen with the catalytic domain of cholera toxin (CTA1) and the two-domain D of staphylococcal protein A (DD) has significant potential for intranasal vaccines.

View Article and Find Full Text PDF

Palm kernel meal (PKM) presents a challenge for non-ruminant livestock feeding due to its high fibre content predominantly in the form of mannan. Microbial fermentation offers a sustainable solution for fibre hydrolysis in lignocellulosic biomass. In this study, a Bacillus subtilis strain (F6), with high mannanase secretion capability, was isolated from the environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!