Redox-reactions are playing a significant role in regulation of homeostasis of organism. Disorder of the redox-status is related with the onset and/or propagation of oxidative diseases such as lifestyle-related diseases, including cancers and cardiac diseases, etc. In vivo imaging of redox-status is thereby important in the analysis of mechanisms of oxidative diseases and developments of new medicines for the diseases. Aminoxyl radicals are redox-sensitive reporter molecules, which lose their paramagnetic moiety by reactions of free radicals or reducing compounds. Electron spin resonance (ESR) technique has been used to measure the molecules in vivo. In vivo spatial resolution in ESR imaging is in the range of a few millimeters and is not sufficient for the detailed diagnosis of disease models. Overhauser enhanced MRI (OMRI) is an emerging free radical imaging technique, which utilised electron-proton coupling to image the distribution of free radicals. In vivo imaging of redox-status is applicable with OMRI/aminoxyl radical technique. The detailed imaging analysis was demonstrated in oxidative diseases, such as tumour-bearing, neurodegeneration or gastric ulcer models. The OMRI/aminoxyl radical technique has a large potential as a diagnostic system for biomedical applications in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/10715762.2012.670874 | DOI Listing |
Environ Sci Technol
January 2025
Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94609, United States.
Exposure to household air pollution has been linked to adverse health outcomes among women aged 40-79. Little is known about how shifting from biomass cooking to a cleaner fuel like liquefied petroleum gas (LPG) could impact exposures for this population. We report 24-h exposures to particulate matter (PM), black carbon (BC), and carbon monoxide (CO) among women aged 40 to <80 years participating in the Household Air Pollution Intervention Network trial.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) is a chronic condition characterized by hepatic steatosis in the absence of significant alcohol consumption and is increasingly recognized as the hepatic manifestation of metabolic syndrome (MetS). This review aims to explore the molecular mechanisms underlying the interaction between NAFLD, insulin resistance (IR), and MetS, with a focus on identifying therapeutic targets. A comprehensive review of existing literature on NAFLD, IR, and MetS was conducted.
View Article and Find Full Text PDFInt J Cardiol Heart Vasc
February 2025
Department of Geriatrics, Peking University Third Hospital, Beijing 100191, PR China.
Background: Ferroptosis is a cell death process that depends on iron and reactive oxygen species. It significantly contributes to cardiovascular diseases. However, its exact role in ischemic cardiomyopathy (ICM) is still unclear.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
Macrophage-mediated inflammation plays a pivotal role in cardiovascular disease pathogenesis. However, current cell-based models lack a comprehensive understanding of crosstalk between macrophages and cardiomyocytes, hindering the discovery of effective therapeutic interventions. Here, a microfluidic model has been developed to facilitate the coculture of macrophages and cardiomyocytes, allowing for mapping key signaling pathways and screening potential therapeutic agents against inflammation-induced dynamic myocardial injury.
View Article and Find Full Text PDFRSC Adv
January 2025
Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
The Keap1 (Kelch-like ECH-Associating Protein 1)-Nrf2 (Nuclear Factor Erythroid 2-Related Factor 2)-ARE (Antioxidant Response Element) signaling pathway plays a crucial role in the oxidative stress response and has been linked to the development and progression of various diseases. Its influence on cerebral ischemia/reperfusion (I/R) injury has garnered significant attention. In our study, we investigated the effect of compound 2, a non-covalent inhibitor of the Keap1-Nrf2 interaction, which was previously discovered by our research group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!