β-Adrenergic receptor (AR) blockers provide substantial clinical benefits, including improving overall survival and left ventricular (LV) function following myocardial infarction (MI), though the mechanisms remain incompletely defined. The transverse-tubule (T-tubule) system of ventricular myocytes is an important determinant of cardiac excitation-contraction function. T-tubule remodeling occurs early during LV failure. We hypothesized that β-AR blockers prevent T-tubule remodeling and thereby provide therapeutic benefits. A murine model of MI was utilized to examine the effect of β-AR blockers on T-tubule remodeling following LV MI. We applied the in situ imaging of T-tubule structure from Langendorff-perfused intact hearts with laser scanning confocal microscopy. We found that MI caused remarkable T-tubule remodeling near the infarction border zone and moderate LV remodeling remote from the MI. Metoprolol and carvedilol administered 6 d after MI for 4 wk each increased the T-tubule integrity at the remote and border zones. At the molecular level, both β-AR blockers restored border and remote zone expression of junctophilin-2 (JP-2), which is involved in T-tubule organization and formation of the T-tubule/sarcoplasmic reticulum junctions. In contrast, β-AR blockers had no significant effects on caveolin-3 expression. In summary, our data show that β-AR antagonists can protect against T-tubule remodeling after MI, suggesting a novel therapeutic mechanism of action for this drug class. Preservation of JP-2 expression may contribute to the beneficial effects of metoprolol and carvedilol on T-tubule remodeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3360148PMC
http://dx.doi.org/10.1096/fj.11-199505DOI Listing

Publication Analysis

Top Keywords

t-tubule remodeling
28
β-ar blockers
16
t-tubule
11
β-adrenergic receptor
8
remodeling
8
myocardial infarction
8
metoprolol carvedilol
8
blockers
5
β-ar
5
receptor antagonists
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!