In the water-limited bread wheat production environment of southern Australia, large advances in grain yield have previously been achieved through the introduction and improved understanding of agronomic traits controlled by major genes, such as the semi-dwarf plant stature and photoperiod insensitivity. However, more recent yield increases have been achieved through incremental genetic advances, of which, breeders and researchers do not fully understand the underlying mechanism(s). A doubled haploid population was utilised, derived from a cross between RAC875, a relatively drought-tolerant breeders' line and Kukri, a locally adapted variety more intolerant of drought. Experiments were performed in 16 environments over four seasons in southern Australia, to physiologically dissect grain yield and to detect quantitative trait loci (QTL) for these traits. Two stage multi-environment trial analysis identified three main clusters of experiments (forming distinctive environments, ENVs), each with a distinctive growing season rainfall patterns. Kernels per square metre were positively correlated with grain yield and influenced by kernels per spikelet, a measure of fertility. QTL analysis detected nine loci for grain yield across these ENVs, individually accounting for between 3 and 18% of genetic variance within their respective ENVs, with the RAC875 allele conferring increased grain yield at seven of these loci. These loci were partially dissected by the detection of co-located QTL for other traits, namely kernels per square metre. While most loci for grain yield have previously been reported, their deployment and effect within local germplasm are now better understood. A number of novel loci can be further exploited to aid breeders' efforts in improving grain yield in the southern Australian environment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-012-1831-9DOI Listing

Publication Analysis

Top Keywords

grain yield
32
grain
9
yield
9
bread wheat
8
southern australia
8
qtl traits
8
kernels square
8
square metre
8
loci grain
8
loci
6

Similar Publications

Dissecting the Genetic Basis of Preharvest Sprouting in Rice Using a Genome-Wide Association Study.

J Agric Food Chem

January 2025

Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China.

Preharvest sprouting (PHS) is an unfavorable trait in cereal crops that significantly reduces grain yield and quality. However, the regulatory mechanisms underlying this complex trait are still largely unknown. Here, 276 rice accessions from the 3000 Rice Genomes Project were used to perform a genome-wide association study.

View Article and Find Full Text PDF

Cowpea is deemed as a food security crop due to its ability to produce significant yields under conditions where other staples fail. Its resilience in harsh environments; such as drought, heat and marginal soils; along with its nitrogen-fixing capabilities and suitability as livestock feed make cowpea a preferred choice in many farming systems across sub-Saharan Africa (SSA). Despite its importance, Cowpea yields in farmers' fields remain suboptimal, primarily due to biotic and abiotic factors and the use of either unimproved varieties or improved varieties that are not well-suited to local conditions.

View Article and Find Full Text PDF

An Insect Effector Mimics Its Host Immune Regulator to Undermine Plant Immunity.

Adv Sci (Weinh)

January 2025

Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China.

Plants activate defense machinery when infested by herbivorous insects but avoid such costs in the absence of herbivory. However, the key signaling pathway regulators underlying such flexibility and the mechanisms that insects exploit these components to disarm plant defense systems remain elusive. Here, it is reported that immune repressor 14-3-3e in rice Oryza sativa (OsGF14e) regulates immune homeostasis.

View Article and Find Full Text PDF

Rice, wheat, and maize grains are staple foods, widely consumed for their mineral and nutritional values. However, they can accumulate toxic elements from contaminated soils, posing health risks. This study investigates the bioaccumulation patterns of 52 elements (including nutrients, heavy metals, and rare earth elements) in various parts (grain, husk, straw, and root) of cereals grown in a heavily polluted region.

View Article and Find Full Text PDF

Fusarium Head Blight in Argentina, a Profile of Produced Mycotoxins and a Biocontrol Strategy in Barley During Micro-Malting Process.

Toxins (Basel)

January 2025

Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, Río Cuarto 5800, Argentina.

Barley ( L.) is the second winter crop in Argentina. In the national market, grains are mainly destined to produce malt for beer manufacture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!