Hofmeister series reversal can occur with change in pH, or increase in salt concentration. The phenomena are a challenge for any theory of ion specific effects. Recent theoretical work predicts how a complex interplay between ionic sizes, hydration and dispersion forces explains Hofmeister series reversal. Electrophoretic mobility measurements on lysozyme suspensions reported here are consistent with the theory.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2cp40150aDOI Listing

Publication Analysis

Top Keywords

hofmeister series
12
series reversal
12
salt concentration
8
electrophoretic mobility
8
mobility measurements
8
reversal lysozyme
4
lysozyme change
4
change salt
4
concentration insights
4
insights electrophoretic
4

Similar Publications

Alteration of gel point of poloxamer 338 induced by pharmaceutical actives and excipients.

Eur J Pharm Biopharm

January 2025

BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany. Electronic address:

Poloxamer 338 is used as versatile thermo-responsive gelling agent in topical and sub-cutaneous applications. Due to application specific needs a gel point below body or even below room temperature is required. The influence of inorganic salts and active pharmaceutical ingredients (APIs) on the gel point was investigated using oscillatory rheology to identify the driving forces and predictors for gel point alteration.

View Article and Find Full Text PDF

Solvation Dynamics of Thermoresponsive Polymer Films: The Influence of Salt Series in Water and Mixed Water/Methanol Atmosphere.

Adv Sci (Weinh)

December 2024

Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany.

Understanding the salt effects on solvation behaviors of thermoresponsive polymers is crucial for designing and optimizing responsive systems suitable for diverse environments. In this work, the effect of potassium salts (CHCOOK, KCl, KBr, KI, and KNO) on solvation dynamics of poly(4-(N-(3'-methacrylamidopropyl)-N,N-dimethylammonio) butane-1-sulfonate) (PSBP), poly(N-isopropylmethacrylamide) (PNIPMAM), and PSBP-b-PNIPMAM films is investigated under saturated water and mixed water/methanol vapor via advanced in situ neutron/optical characterization techniques. These findings reveal that potassium salts enhance the films' hygroscopicity or methanol-induced swellability.

View Article and Find Full Text PDF

Hydronium Ions Are Less Excluded from Hydrophobic Polymer-Water Interfaces than Hydroxide Ions.

J Phys Chem B

December 2024

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The cloud point temperatures of aqueous poly(-isopropylacrylamide) (PNIPAM) and poly(ethylene) oxide (PEO) solutions were measured from pH 1.0 to pH 13.0 at a constant ionic strength of 100 mM.

View Article and Find Full Text PDF

Dynamic Modulation of Ions Solvation Sheath by Butyramide as Molecular Additives in Aqueous Batteries.

J Phys Chem B

January 2025

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

The high activity of water in aqueous battery electrolytes can trigger side reactions, limiting their large-scale application. Additives that form contact pairs (CPs) with cations by coordinating with them can effectively reduce water's activity. However, due to the complex interactions between ions, additives, and solvent molecules and the fact that current strategies for additive screening primarily rely on static physical parameters, the dynamic mechanisms that govern the modulation of ion solvation sheaths are still poorly understood.

View Article and Find Full Text PDF

Curious effects of overlooked aspects on urease activity.

Colloids Surf B Biointerfaces

December 2024

Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Firenze 50019, Italy. Electronic address:

Intermolecular forces determine complex chemical structures of exquisite intricacy, like proteins. However even the most advanced theories we have so far rely on too drastic approximations to explain them. Some crucial aspects that dictate structure, specific ion and solvent effects are not accommodated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!