Starch filler and osmoprotectants improve the survival of rhizobacteria in dried alginate beads.

J Microencapsul

Département de Génie des Procédés Alimentaires, ONIRIS, Rue de la Géraudière, BP82225, 44322 Nantes Cedex 03, France.

Published: December 2012

This work deals with optimising the cell survival of rhizobacteria encapsulated in alginate beads filled with starch. Immobilisation of rhizobacteria was done by dripping alginate-starch solution mixed with rhizobacteria into a calcium solution. Beads were analysed based on matrix formulation, bacteria growth phase, osmoprotectants and nature of calcium solution. Maximum cell recovery was obtained on Raoultella terrigena grown in medium supplemented with trehalose and calcium gluconate as gelling agent. Furthermore, dried beads containing Azospirillum brasilense presented 76% of viable cells after one year of storage. The survival of rhizobacteria during the bioencapsulation process can be improved by incorporating starch on beads composition, varying the growth phase of cells and using trehalose in growth culture medium. This work provides a selection of appropriate methods to improve the surviving rate of encapsulated cells during their production and long-term storage (∼1 year at 4°C).

Download full-text PDF

Source
http://dx.doi.org/10.3109/02652048.2012.665090DOI Listing

Publication Analysis

Top Keywords

survival rhizobacteria
12
alginate beads
8
calcium solution
8
growth phase
8
rhizobacteria
5
beads
5
starch filler
4
filler osmoprotectants
4
osmoprotectants improve
4
improve survival
4

Similar Publications

Plants are sessile organisms that overcome environmental stress by activating specific metabolic pathways, leading to adaptation and survival. In addition, they recruit beneficial bacterial strains to further improve their performance. As plant-growth-promoting rhizobacteria (PGPR) are able to trigger multiple targets to improve plant fitness, finding effective isolates for this purpose is of paramount importance.

View Article and Find Full Text PDF

The pursuit of materials, particularly plastics, with a minimal ecological footprint throughout their circular lifecycle, is crucial for advancing sustainable materials development. Living materials composed of embedded yet active organisms can leverage endogenous biotic resources to achieve functional materials that align with sustainability goals. However, current living material systems face challenges such as weak mechanical properties, limited environmental adaptability, and restricted cellular functionality.

View Article and Find Full Text PDF

Nutrient deficiency intensifies drought and salinity stress on rice growth. Bacillus amyloliquefaciens inoculation provides resilience through modulation in metabolic and gene regulation to enhance growth, nutrient uptake, and stress tolerance. Soil nutrient deficiencies amplify the detrimental effects of abiotic stresses, such as drought and salinity, creating substantial challenges for overall plant health and crop productivity.

View Article and Find Full Text PDF

Restoration of degraded seagrass meadows: Effects of plant growth-promoting rhizobacteria (PGPR) inoculation on Zostera marina growth, rhizosphere microbiome and ecosystem functionality.

J Environ Manage

December 2024

Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, People's Republic of China; Joint Research Center for Conservation, Restoration & Sustainable Utilization of Marine Ecology, Ocean University of China-China State Shipbuilding Corporation Environmental Development Co., Ltd., Qingdao, 266100, People's Republic of China; Observation and Research Station of Yellow-Bohai Sea Temperate Seagrass Bed Ecosystem, Ministry of Natural Resources, Qingdao, 266033, People's Republic of China. Electronic address:

The utilization of plant growth-promoting rhizobacteria (PGPR) holds great promise for the restoration of damaged terrestrial plant ecosystems. However, there is a significant knowledge gap regarding the application of PGPR in rehabilitating aquatic ecosystems. In this study, we conducted a mesocosm experiment to investigate the effects of Raoultella ornithinolytica F65, Pantoea cypripedii G84, Klebsiella variicola G85, Novosphingobium profundi G86, and Klebsiella pneumoniae I109 on eelgrass (Zostera marina L.

View Article and Find Full Text PDF

Drought stress imposes a serious challenge to cultivate wheat, restricting its growth. Drought reduces the capability of plant to uptake essential nutrients. This causes stunted growth, development and yield.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!