A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of crown ferrule heights and dowel material selection on the mechanical behavior of root-filled teeth: a finite element analysis. | LitMetric

Purpose: This study used the 3D finite element (FE) method to evaluate the mechanical behavior of a maxillary central incisor with three types of dowels with variable heights of the remaining crown structure, namely 0, 1, and 2 mm.

Materials And Methods: Based on computed microtomography, nine models of a maxillary central incisor restored with complete ceramic crowns were obtained, with three ferrule heights (0, 1, and 2 mm) and three types of dowels (glass fiber = GFD; nickel-chromium = NiCr; gold alloy = Au), as follows: GFD0--restored with GFD with absence (0 mm) of ferrule; GFD1--similar, with 1 mm ferrule; GFD2--glass fiber with 2 mm ferrule; NiCr0--restored with NiCr alloy dowel with absence (0 mm) of ferrule; NiCr1--similar, with 1 mm ferrule; NiCr2--similar, with 2 mm ferrule; Au0--restored with Au alloy dowel with absence (0 mm) of ferrule; Au1--similar, with 1 mm ferrule; Au2--similar, with 2 mm ferrule. A 180 N distributed load was applied to the lingual aspect of the tooth, at 45° to the tooth long axis. The surface of the periodontal ligament was fixed in the three axes (x = y = z = 0). The maximum principal stress (σ(max)), minimum principal stress (σ(min)), equivalent von Mises (σ(vM)) stress, and shear stress (σ(shear)) were calculated for the remaining crown dentin, root dentin, and dowels using the FE software.

Results: The σ(max) (MPa) in the crown dentin were: GFD0 = 117; NiCr0 = 30; Au0 = 64; GFD1 = 113; NiCr1 = 102; Au1 = 84; GFD2 = 102; NiCr2 = 260; Au2 = 266. The σ(max) (MPa) in the root dentin were: GFD0 = 159; NiCr0 = 151; Au0 = 158; GFD1 = 92; NiCr1 = 60; Au1 = 67; GFD2 = 97; NiCr2 = 87; Au2 = 109.

Conclusion: The maximum stress was found for the NiCr dowel, followed by the Au dowel and GFD; teeth without ferrule are more susceptible to the occurrence of fractures in the apical root third.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1532-849X.2011.00832.xDOI Listing

Publication Analysis

Top Keywords

ferrule
12
absence ferrule
12
ferrule heights
8
mechanical behavior
8
finite element
8
maxillary central
8
central incisor
8
three types
8
types dowels
8
remaining crown
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!