This study investigated the effects of serum-starvation, total confluence, and roscovitine treatment on cell-cycle synchronization of buffalo ear skin fibroblasts to the G0/G1 stage and on the developmental competence of cloned embryos. Serum starvation of total confluence cultures for 24 h had a higher (p<0.05) proportion of cells at G0/G1 stage (94.4%) compared with serum starved cyclic and nonstarved confluent cultures (76.8 and 86.0%, respectively), whereas differences between cyclic cells with or without serum starvation were not significant. The proportion of cells at G0/G1 was higher (p<0.05) with 20 and 30 μM roscovitine treatment than that with 10 μM (94.4, 96.4, and 86.6%, respectively), which was similar to that for total confluence (86.0%). MTT assay showed that cell viability decreased as dose of roscovitine increased. The blastocyst rate was significantly higher (p<0.05) when nuclear transfer embryos were reconstructed using donors cells from total confluence, confluence serum starved, and roscovitine-treated (20 and 30 μM) groups (48.8, 48.9, 57.9, and 62.9%, respectively) compared to nontreated cyclic cells (20.2%). However, the cleavage rate and total cell number of cloned embryos were similar for all the groups. The number of ICM cells was improved by 30 μM roscovitine treatment (45.25 ± 2.34). The cryosurvival rate of blastocysts derived from cells synchronized with 20 or 30 μM roscovitine was higher compared to that for total confluence group (33.6, 37.8 vs. 23.8%). In conclusion, treatment with 30 μM roscovitine is optimal for harvesting G0/G1 stage cells for producing high quality cloned buffalo embryos, and that it is better than serum-starvation or total confluence for cell synchronization.

Download full-text PDF

Source
http://dx.doi.org/10.1089/cell.2011.0076DOI Listing

Publication Analysis

Top Keywords

roscovitine treatment
8
g0/g1 stage
8
total confluence
8
treatment improves
4
improves synchronization
4
synchronization donor
4
donor cell
4
cell cycle
4
cycle g0/g1
4
stage vitro
4

Similar Publications

Background: Several studies have evaluated different cell cycle synchronization methods to improve reprogramming efficiency aimed at wild species conservation. The six-banded armadillo is one of the wild mammals with significant ecological and biomedical interests but has not yet been evaluated for reprogramming purposes.

Objective: We investigated the effects in a time-dependent manner of serum starvation (SS; 0.

View Article and Find Full Text PDF
Article Synopsis
  • * Research has focused on post-translational modifications of the HTT protein, with findings showing that certain modifications can reduce the toxicity of the mutant protein in cell and animal models.
  • * A study identified cyclin-dependent kinases (CDKs) that influence the phosphorylation of specific serine sites on HTT, and the CDK inhibitor roscovitine demonstrated protective effects against mutant HTT toxicity in HD mice, highlighting its potential as a pre-clinical therapeutic.
View Article and Find Full Text PDF

Exploring the role of Cdk5 on striatal synaptic plasticity in a 3-NP-induced model of early stages of Huntington's disease.

Front Mol Neurosci

November 2024

Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, Unidad de Biomedicina, FES-I, Universidad Nacional Autónoma de México, Mexico City, Mexico.

Article Synopsis
  • Impaired mitochondrial function is linked to neurodegenerative diseases like Huntington's disease (HD), with 3-NP as a toxin that induces relevant cellular changes in the striatum.
  • Cyclin-dependent kinase 5 (Cdk5) is a key signaling molecule involved in both cellular pathology and synaptic plasticity, prompting investigations into its role in corticostriatal changes under 3-NP treatment.
  • The study reveals that while Cdk5 levels increase with 3-NP treatment, it affects long-term depression (LTD) and long-term potentiation (LTP) differently, suggesting that Cdk5 may alter signaling pathways that affect neuronal activity during the early phases of neurodegeneration.
View Article and Find Full Text PDF

Our research aims to design novel pyrimidine derivatives inspired by the common pyrimidine core found in many FDA-approved drugs. However, extensive prior research on the pyrimidine scaffold has made discovering new molecules more challenging. To overcome this obstacle, we employed a molecular hybridisation strategy, opting to hybridise tetralin and pyrimidine, recognising their potential in cancer therapeutics.

View Article and Find Full Text PDF

Due to the limited effeteness and safety concerns associated with current cancer treatments, there is a pressing need to develop novel therapeutic agents. 4-(3,4-Dimethoxyphenyl)-3-(4-methoxyphenyl)-1-phenyl-1H-pyrazolo[3,4-b]pyridine (3) was synthesized and Initially screened on 59 cancer cell lines showed promising anticancer activity, so, it was chosen for a 5-dose experiment by the NCI/USA. The GI values ranged from 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!