A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Low red/far-red ratios reduce Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic acid-independent mechanism. | LitMetric

Low red/far-red ratios reduce Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic acid-independent mechanism.

Plant Physiol

Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, C1417DSE Buenos Aires, Argentina.

Published: April 2012

AI Article Synopsis

  • Light affects how plants respond to immune challenges, particularly against the fungus Botrytis cinerea, by modulating the activity of the photoreceptor phytochrome B (phyB).
  • A low red/far-red light ratio (R:FR), signaling competitive growth conditions, reduces the expression of defense markers and alters sensitivity to jasmonate, which is a key plant hormone involved in defense mechanisms.
  • The study indicates that this R:FR effect operates through a specific jasmonate receptor module, increasing the susceptibility of plants to fungal infections, especially in dense plant canopies, independent of salicylic acid signaling.

Article Abstract

Light is an important modulator of plant immune responses. Here, we show that inactivation of the photoreceptor phytochrome B (phyB) by a low red/far-red ratio (R:FR), which is a signal of competition in plant canopies, down-regulates the expression of defense markers induced by the necrotrophic fungus Botrytis cinerea, including the genes that encode the transcription factor ETHYLENE RESPONSE FACTOR1 (ERF1) and the plant defensin PLANT DEFENSIN1.2 (PDF1.2). This effect of low R:FR correlated with a reduced sensitivity to jasmonate (JA), thus resembling the antagonistic effects of salicylic acid (SA) on JA responses. Low R:FR failed to depress PDF1.2 mRNA levels in a transgenic line in which PDF1.2 transcription was up-regulated by constitutive expression of ERF1 in a coronatine insensitive1 (coi1) mutant background (35S::ERF1/coi1). These results suggest that the low R:FR effect, in contrast to the SA effect, requires a functional SCFCOI1-JASMONATE ZIM-DOMAIN (JAZ) JA receptor module. Furthermore, the effect of low R:FR depressing the JA response was conserved in mutants impaired in SA signaling (sid2-1 and npr1-1). Plant exposure to low R:FR ratios and the phyB mutation markedly increased plant susceptibility to B. cinerea; the effect of low R:FR was (1) independent of the activation of the shade-avoidance syndrome, (2) conserved in the sid2-1 and npr1-1 mutants, and (3) absent in two RNA interference lines disrupted for the expression of the JAZ10 gene. Collectively, our results suggest that low R:FR ratios depress Arabidopsis (Arabidopsis thaliana) immune responses against necrotrophic microorganisms via a SA-independent mechanism that requires the JAZ10 transcriptional repressor and that this effect may increase plant susceptibility to fungal infection in dense canopies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320205PMC
http://dx.doi.org/10.1104/pp.112.193359DOI Listing

Publication Analysis

Top Keywords

low rfr
28
low
9
low red/far-red
8
botrytis cinerea
8
immune responses
8
rfr
8
sid2-1 npr1-1
8
rfr ratios
8
plant susceptibility
8
plant
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!