DCs are potent initiators of adaptive immune responses toward invading pathogens. Upon reception of pathogenic stimuli, DCs initiate a complex differentiation program, culminating in mature DCs with an extreme capacity to activate naïve T cells. During this maturation, DCs reduce the synthesis and turnover of MHC II molecules. This allows for a stable population of MHC II, presenting peptides captured at the time and place of activation, thus provoking specific immune responses toward the activating pathogen. The efficient loading of antigenic peptides onto MHC II is vitally dependent on the accessory molecule Ii, which aids in the assembly of the MHC II α- and β-chains in the ER and directs their trafficking to the endocytic compartments, where they encounter endocytosed antigen. However, Ii plays additional roles in DC function by influencing migration, antigen uptake, and processing. To examine the biosynthetic background for diverse Ii functions in DCs, we investigated mRNA and protein levels of Ii compared with MHC II in human moDCs during maturation using various stimuli. We find that the production of Ii did not correlate with that of MHC II and that mature DCs maintain abundant levels of Ii despite a reduced production of new MHC II.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1189/jlb.0311150 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
Purpose: To investigate the role of S100A8/A9 in the pathogenesis of Sjögren's dry eye disease (SjDED) and explore its potential mechanism of action.
Methods: S100A8/A9 expression was determined by western blot and quantitative real-time polymerase chain reaction (qRT-PCR). Tear secretion, corneal fluorescein staining, and hematoxylin and eosin staining were used to evaluate the effect of paquinimod, a S100A8/A9 inhibitor, on dry eye disease in nonobese diabetic (NOD) mice.
Mol Cancer
January 2025
Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
Lipid nanoparticles (LNPs) for mRNA delivery have advanced significantly, but LNP-mediated DNA delivery still faces clinical challenges. This study compared various LNP formulations for delivering DNA-encoded biologics, assessing their expression efficacy and the protective immunity generated by LNP-encapsulated DNA in different models. The LNP formulation used in Moderna's Spikevax mRNA vaccine (LNP-M) demonstrated a stable nanoparticle structure, high expression efficiency, and low toxicity.
View Article and Find Full Text PDFCan J Public Health
January 2025
University Health Network, Toronto, ON, Canada.
Setting: Despite Canada's single-payer health system, marginalized populations often experience poor health outcomes and barriers to healthcare access. In response, mobile health clinics (MHCs) have been deployed in several cities across Canada. MHCs are well established in the United States; however, little is known about their role and impact in a country with universal healthcare.
View Article and Find Full Text PDFCancer Res
January 2025
Oregon Health & Science University, Portland, OR, United States.
Senescence is a non-proliferative, survival state that cancer cells can enter to escape therapy. In addition to soluble factors, senescence cells secrete extracellular vesicles (EVs), which are important mediators of intercellular communication. To explore the role of senescent cell-derived EVs (senEVs) in inflammatory responses to senescence, we developed an engraftment-based senescence model in wild-type mice and genetically blocked senEV release in vivo, without significantly affecting soluble mediators.
View Article and Find Full Text PDFCancer Immunol Res
January 2025
Vanderbilt University, Nashville, TN, United States.
Tumor-specific HLA class I expression is required for cytotoxic T-cell elimination of cancer cells expressing tumor-associated or neo-antigens. Cancers downregulate antigen presentation to avoid adaptive immunity. The highly polymorphic nature of the genes encoding these proteins, coupled with quaternary-structure changes after formalin fixation, complicate detection by immunohistochemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!