Potato variety discrimination based on morphological traits is laborious and influenced by the environment, while currently applied molecular markers are either expensive or time-consuming in development or application. SINEs, short interspersed nuclear elements, are retrotransposons with a high copy number in plant genomes representing a potential source for new markers. We developed a marker system for potato genotyping, designated inter-SINE amplified polymorphism (ISAP). Based on nine potato SINE families recently characterized (Wenke et al. in Plant Cell 23:3117-3128, 2011), we designed species-specific SINE primers. From the resulting 153 primer combinations, highly informative primer sets were selected for potato variety analysis regarding number of bands, quality of the banding pattern, and the degree of polymorphism. Fragments representing ISAPs can be separated by conventional agarose gel electrophoresis; however, automation with a capillary sequencer is feasible. Two selected SINE families, SolS-IIIa and SolS-IV, were shown to be highly but differently amplified in Solanaceae, Solaneae tribe, including wild and cultivated potatoes, tomato, and eggplant. Fluorescent in situ hybridization demonstrated the genome-wide distribution of SolS-IIIa and SolS-IV along potato chromosomes, which is the basis for genotype discrimination and differentiation of somaclonal variants by ISAP markers.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-012-1825-7DOI Listing

Publication Analysis

Top Keywords

development application
8
potato variety
8
sine families
8
sols-iiia sols-iv
8
potato
6
application sine-based
4
markers
4
sine-based markers
4
markers genotyping
4
genotyping potato
4

Similar Publications

Comparative Study of Iminodibenzyl and Diphenylamine Derivatives as Hole Transport Materials in Inverted Perovskite Solar Cells.

Chemistry

January 2025

Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg, Department of Materials Science and Engineering, Institute of Materials for Electronics and Energy Technology (i-MEET), Martensstraße 7, 91058, Erlangen, GERMANY.

Perovskite solar cells (PSCs) have recently achieved over 26% power conversion efficiency, challenging the dominance of silicon-based alternatives. This progress is significantly driven by innovations in hole transport materials (HTMs), which notably influence the efficiency and stability of PSCs. However, conventional organic HTMs like PTAA, although highly efficient, suffer from thermal degradation, moisture ingress, and high cost.

View Article and Find Full Text PDF

Stabilizing large easy-axis type magnetic anisotropy in molecular complexes is a challenging task, yet it is crucial for the development of information storage devices and applications in molecular spintronics. Achieving this requires a deep understanding of electronic structure and the relationships between structure and properties to develop magneto-structural correlations that are currently unexplored in the literature. Herein, a series of five-coordinate distorted square pyramidal Co complexes [Co(L)(X)].

View Article and Find Full Text PDF

One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A.

View Article and Find Full Text PDF

The development of stable and tunable polycyclic aromatic compounds (PACs) is crucial for the advancement of organic optoelectronics. Conventional PACs, such as acenes, often suffer from poor stability due to photooxidation and oligomerization, which are linked to their frontier molecular orbital energy levels. To address these limitations, we designed and synthesized a new class of π-expanded indoloindolizines by merging indole and indolizine moieties into a single polycyclic framework.

View Article and Find Full Text PDF

Photothermal Coating on Zinc Alloy for Controlled Biodegradation and Improved Osseointegration.

Adv Sci (Weinh)

January 2025

Department of Prosthodontics, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.

Zinc (Zn) and its alloys are promising biomaterials for orthopedic applications due to their degradability and mechanical properties. Zn plays a crucial role in bone formation, but excessive early release may cause cytotoxicity and inhibit osseointegration. To solve this, we developed a near-infrared (NIR) light-controlled polycaprolactone/copper-sulfur (PCL/CuS) coating that slows degradation and enhances osseointegration of Zn alloys.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!