A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Induced pluripotent stem cell research: a revolutionary approach to face the challenges in drug screening. | LitMetric

Induced pluripotent stem cell research: a revolutionary approach to face the challenges in drug screening.

Arch Pharm Res

Department of Animal Biotechnology, Animal Resources Research Center, and SMART-IABS, Konkuk University, Seoul 143-701, Korea.

Published: February 2012

Discovery of induced pluripotent stem (iPS) cells in 2006 provided a new path for cell transplantation and drug screening. The iPS cells are stem cells derived from somatic cells that have been genetically reprogrammed into a pluripotent state. Similar to embryonic stem (ES) cells, iPS cells are capable of differentiating into three germ layers, eliminating some of the hurdles in ES cell technology. Further progress and advances in iPS cell technology, from viral to non-viral systems and from integrating to non-integrating approaches of foreign genes into the host genome, have enhanced the existing technology, making it more feasible for clinical applications. In particular, advances in iPS cell technology should enable autologous transplantation and more efficient drug discovery. Cell transplantation may lead to improved treatments for various diseases, including neurological, endocrine, and hepatic diseases. In studies on drug discovery, iPS cells generated from patient-derived somatic cells could be differentiated into specific cells expressing specific phenotypes, which could then be used as disease models. Thus, iPS cells can be helpful in understanding the mechanisms of disease progression and in cell-based efficient drug screening. Here, we summarize the history and progress of iPS cell technology, provide support for the growing interest in iPS cell applications with emphasis on practical uses in cell-based drug screening, and discuss some challenges faced in the use of this technology.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12272-012-0205-9DOI Listing

Publication Analysis

Top Keywords

ips cells
20
drug screening
16
cell technology
16
ips cell
16
cells
10
ips
9
induced pluripotent
8
pluripotent stem
8
cell
8
cell transplantation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!