Mapping the transition state for DNA bending by IHF.

J Mol Biol

Department of Physics (M/C 273), University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA.

Published: May 2012

How DNA-bending proteins recognize their specific sites on DNA remains elusive, particularly for proteins that use indirect readout, which relies on sequence-dependent variations in DNA flexibility/bendability. The question remains as to whether the protein bends the DNA (protein-induced bending) or, alternatively, "prebent" DNA conformations are thermally accessible, which the protein captures to form the specific complex (conformational capture). To distinguish between these mechanisms requires characterization of reaction intermediates and, in particular, snapshots of the transition state along the recognition pathway. We present such a snapshot, from measurements of DNA bending dynamics in complex with Escherichia coli integration host factor (IHF), an architectural protein that bends specific sites on λ-DNA in a U-turn by creating two sharp kinks in DNA. Fluorescence resonance energy transfer measurements in response to laser temperature-jump perturbation monitor DNA bending. We find that nicks or mismatches that enhance DNA flexibility at the site of the kinks show 3- to 4-fold increase in DNA bending rates that reflect a 4- to 11-fold increase in binding affinities, while sequence modifications away from the kink sites, as well as mutations in IHF designed to destabilize the complex, have negligible effect on DNA bending rates despite >250-fold decrease in binding affinities. These results support the scenario that the bottleneck in the recognition step for IHF is spontaneous kinking of cognate DNA to adopt a partially prebent conformation and point to conformational capture as the underlying mechanism of initial recognition, with additional protein-induced bending occurring after the transition state.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2012.02.028DOI Listing

Publication Analysis

Top Keywords

dna bending
20
transition state
12
dna
12
specific sites
8
protein bends
8
protein-induced bending
8
conformational capture
8
bending rates
8
binding affinities
8
bending
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!