A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Engineering a thermostable β-1,3-1,4-glucanase from Paecilomyces thermophila to improve catalytic efficiency at acidic pH. | LitMetric

To fulfill the need for acid-tolerant and thermostable β-1,3-1,4-glucanases, an error-prone PCR and DNA-shuffling approach was employed to enhance the activity of thermostable β-1,3-1,4-glucanases from Paecilomyces thermophila (PtLic16A) at acidic pH. Mutant PtLic16AM2 was selected and characterized, and showed optimal activity at pH 5.0, corresponding to an acidic shift of 2.0 pH units relative to the wild-type enzyme. Other properties of PtLic16A such as temperature optimum and substrate specificity that are beneficial for industrial applications did not change. Based on the substituted residues of PtLic16AM2, three site-directed mutations, D56G, D221G and C263S, were designed to study these residues' roles. The amino acid residues at positions 56 and 263 were found to be important in determining optimal pH activity. Activity of the D221G variant showed no significant difference from the wild-type. Thus, it appears that the change in optimal pH for PtLic16AM2 was mainly caused by the combination of substitutions D56G and C263S. This study provides a β-1,3-1,4-glucanase (PtLic16AM2) with high potential for industrial applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2012.02.007DOI Listing

Publication Analysis

Top Keywords

paecilomyces thermophila
8
thermostable β-13-14-glucanases
8
optimal activity
8
industrial applications
8
engineering thermostable
4
thermostable β-13-14-glucanase
4
β-13-14-glucanase paecilomyces
4
thermophila improve
4
improve catalytic
4
catalytic efficiency
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!