We sought to breed an industrially useful yeast strain, specifically an ethanol-tolerant yeast strain that would be optimal for ethanol production, using a novel breeding method, called genome reconstruction, based on chromosome splitting technology. To induce genome reconstruction, Saccharomyces cerevisiae strain SH6310, which contains 31 chromosomes including 12 artificial mini-chromosomes, was continuously cultivated in YPD medium containing 6% to 10% ethanol for 33 days. The 12 mini-chromosomes can be randomly or specifically lost because they do not contain any genes that are essential under high-level ethanol conditions. The strains selected by inducing genome reconstruction grew about ten times more than SH6310 in 8% ethanol. To determine the effect of minichromosome loss on the ethanol tolerance phenotype, PCR and Southern hybridization were performed to detect the remaining mini-chromosomes. These analyses revealed the loss of mini-chromosomes no. 11 and no. 12. Mini-chromosome no. 11 contains ten genes (YKL225W, PAU16, YKL223W, YKL222C, MCH2, FRE2, COS9, SRY1, JEN1, URA1) and no. 12 contains fifteen genes (YHL050C, YKL050W-A, YHL049C, YHL048C-A, COS8, YHLComega1, ARN2, YHL046W-A, PAU13, YHL045W, YHL044W, ECM34, YHL042W, YHL041W, ARN1). We assumed that the loss of these genes resulted in the ethanol-tolerant phenotype and expect that this genome reconstruction method will be a feasible new alternative for strain improvement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4014/jmb.1109.09046 | DOI Listing |
Life Med
October 2024
State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China.
The ovary plays a crucial role in the reproductive system of female mammals by producing mature oocytes through folliculogenesis. Non-human model organisms are extensively utilized in research on human ovarian biology, thus necessitating the investigation of conservation and divergence in molecular mechanisms across species. In this study, we employed integrative single-cell analysis of transcriptome and chromatin accessibility to identify the evolutionary conservation and divergence patterns of ovaries among humans, monkeys, mice, rats, and rabbits.
View Article and Find Full Text PDFLife Med
June 2024
Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
Aging has ascended to the forefront of scientific exploration, demanding a concerted global focus. The 2024 China Aging Science Conference and International Conference on Aging Biology hosted a panel discussion that brought international experts to delve into the complexities of aging research. The discussion underscores the imperative need for a multidisciplinary approach, integrating reductionist and holistic perspectives to unravel the molecular and epigenetic underpinnings of the aging process.
View Article and Find Full Text PDFGenome Med
January 2025
Department of Epidemiology of Microbial Disease, Yale School of Public Health, 60 College Street, New Haven, CT, USA.
Background: Mixed infection with multiple strains of the same pathogen in a single host can present clinical and analytical challenges. Whole genome sequence (WGS) data can identify signals of multiple strains in samples, though the precision of previous methods can be improved. Here, we present MixInfect2, a new tool to accurately detect mixed samples from Mycobacterium tuberculosis short-read WGS data.
View Article and Find Full Text PDFNat Methods
January 2025
Broad Institute of MIT and Harvard, Cambridge, MA, USA.
A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries.
View Article and Find Full Text PDFChembiochem
January 2025
Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Department of Biosynthesis of Natural Products, 1# Xian Nong Tan Street, 100050, Beijing, CHINA.
There is no doubt that breakthroughs in the enzyme-mediated formation of the oxetane ring in paclitaxel biosynthesis constitute significant milestones in the biosynthesis of complex natural products. In this review, we summarize the understanding of the biosynthesis of the oxetane ring of paclitaxel from different viewpoints. Generally, it covers five aspects, (1) a different understanding of the mechanistic formation of the oxetane ring on the basis of sound chemical reasoning, (2) a reasonable speculation of the biosynthetic pathways and suitable surrogate substrates for oxetane ring formation based on the natural and chemical logical analysis, (3) Taxus genome-enabled enzymes identification, (4) the discovery of different enzymes that mediate oxetane ring formation, and (5) a mechanistic investigation involving the use of isotopic labelling experiments and quantum chemical calculations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!