Protein microarrays have emerged as an indispensable research tool for providing information about protein functions and interactions through high-throughput screening. Traditional methods for immobilizing biomolecules onto solid surfaces have been based on covalent and noncovalent binding, entrapment in semipermeable membranes, microencapsulation, sol gel, and hydrogel methods. Each of these techniques has its own strengths but fails to combine the most important tenets of a functional protein microarray such as covalent attachment, native protein conformation, homogeneity of the protein monolayer, control over active site orientation, and retention of protein activity. Here we present a selective and site-directed covalent immobilization technique for proteins via a benzoxazine ring formation through a Diels-Alder reaction in water and a genetically encoded 3-amino-L-tyrosine (3-NH(2)Tyr) amino acid. Fully functional protein microarrays, with monolayer arrangements and complete control over their orientations, were generated using this strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2012.02.019DOI Listing

Publication Analysis

Top Keywords

functional protein
12
protein microarrays
12
protein
8
biosynthetic approach
4
approach functional
4
microarrays protein
4
microarrays emerged
4
emerged indispensable
4
indispensable tool
4
tool providing
4

Similar Publications

Multiple gene-deletion vaccinia virus Tiantan strain against mpox.

Virol J

January 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, People's Republic of China.

Monkeypox virus (MPXV) is an important zoonotic pathogenic virus, which poses serious threats to public health. MPXV infection can be prevented by immunization against the variola virus. Because of the safety risks and side effects of vaccination with live vaccinia virus (VACV) strain Tian Tan (VTT), we constructed two gene-deleted VTT recombinants (TTVAC7 and TTVC5).

View Article and Find Full Text PDF

Background: Stroke has emerged as an escalating public health challenge among middle-aged and older individuals in China, closely linked to glycolipid metabolic abnormalities. The Hemoglobin A1c/High-Density Lipoprotein Cholesterol (HbA1c/HDL-C) ratio, an integrated marker of glycolipid homeostasis, may serve as a novel predictor of stroke risk.

Methods: Our investigation utilized data from the China Health and Retirement Longitudinal Study cohort (2011-2018).

View Article and Find Full Text PDF

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.

Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!