Progressive multisystem disease should invoke consideration of potential mitochondrial etiologies. Mitochondrial disease can affect any organ system at any time, particularly involving neurologic, cardiac, muscular, gastroenterologic, and/or ophthalmologic manifestations. We report here a 19-year-old Caucasian man who was followed since birth in multiple pediatric subspecialty clinics for myelomeningocele complications. However, he progressively developed a host of additional problems that were not readily attributable to his neural tube defect involving developmental, ophthalmologic, cardiac, muscular, endocrine, and intermediary metabolic manifestations. Clinical diagnostic testing limited to analysis for common point mutations and deletions in his blood mitochondrial DNA (mtDNA) was not revealing. Skeletal muscle biopsy revealed abnormal mitochondrial morphology and immunostaining, mitochondrial proliferation, and mildly reduced respiratory chain complex I-III activity. Whole mitochondrial genome sequencing analysis in muscle identified an apparently homoplasmic, novel, m.12264C>T transition in the tRNA serine (AGY) gene. The pathogenicity of this mutation was supported by identification of it being present at low heteroplasmy load in his blood (34%) as well as in blood from his maternal grandmother (1%). The proband developed severe nuclear cataracts that proved to be homoplasmic for the pathogenic mtDNA m.12264C>T mutation. This case highlights the value of pursuing whole mitochondrial genome sequencing in symptomatic tissues in the diagnostic evaluation of suspected mitochondrial disease. Furthermore, it is the first report to directly implicate a single mtDNA mutation in the pathogenesis of ocular cataracts and clearly illustrates the important contribution of normal metabolic activity to the function of the ocular lens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3618896PMC

Publication Analysis

Top Keywords

mitochondrial
9
multisystem disease
8
mitochondrial disease
8
cardiac muscular
8
mitochondrial genome
8
genome sequencing
8
mitochondrial trna-serine
4
trna-serine agy
4
agy mc12264t
4
mutation
4

Similar Publications

Hypothermic oxygenated machine perfusion (HOPE) preconditions liver grafts before transplantation. While beneficial effects on patient outcomes were demonstrated, biomarkers for viability assessment during HOPE are scarce and lack validation. This study aims to validate the predictive potential of perfusate flavin mononucleotide (FMN) during HOPE to enable the implementation of FMN-based assessment into clinical routine and to identify safe organ acceptance thresholds.

View Article and Find Full Text PDF

Nematodes are abundant and ubiquitous animals which are poorly known at intraspecific level. This work represents the first attempt to fill the gap on basic knowledge of genetic variability and differentiation in Protostrongylus oryctolagi, a nematode parasite of lagomorphs. 68 cox1 sequences were obtained from brown hares collected in five locations in Northern and Central Italy, highlighting the presence of a high amount of genetic variation inside this species.

View Article and Find Full Text PDF

Tequila bats (genus Leptonycteris) have gained attention for their critical role in pollinating different plant species, especially Agave spp. and columnar cacti. Leptonycteris nivalis is the largest nectar-feeding bat in the Americas, and the females exhibit migratory behavior during the breeding season.

View Article and Find Full Text PDF

Eugenol, a phenolic natural product with diverse pharmacological activities, remains unexplored in liver cancer. Using network pharmacology, we investigated eugenol's therapeutic mechanisms in liver cancer. We obtained eugenol's molecular structure from PubChem and screened its targets using similarity ensemble approach in Swiss Target Predictiondatabases.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) rely on self-renewal to sustain stem cell potential and undergo differentiation to generate mature blood cells. Mitochondrial fatty acid β-oxidation (FAO) is essential for HSC maintenance. However, the role of Carnitine palmitoyl transferase 1a (CPT1A), a key enzyme in FAO, remains unclear in HSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!