AI Article Synopsis

Article Abstract

We study the growth and relaxation processes of Ge crystals selectively grown by chemical vapour deposition on free-standing 90 nm wide Si(001) nanopillars. Epi-Ge with thickness ranging from 4 to 80 nm was characterized by synchrotron based x-ray diffraction and transmission electron microscopy. We found that the strain in Ge nanostructures is plastically released by nucleation of misfit dislocations, leading to degrees of relaxation ranging from 50 to 100%. The growth of Ge nanocrystals follows the equilibrium crystal shape terminated by low surface energy (001) and {113} facets. Although the volumes of Ge nanocrystals are homogeneous, their shape is not uniform and the crystal quality is limited by volume defects on {111} planes. This is not the case for the Ge/Si nanostructures subjected to thermal treatment. Here, improved structure quality together with high levels of uniformity of the size and shape is observed.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/23/11/115704DOI Listing

Publication Analysis

Top Keywords

growth relaxation
8
relaxation processes
8
si001 nanopillars
8
processes nanocrystals
4
nanocrystals free-standing
4
free-standing si001
4
nanopillars study
4
study growth
4
processes crystals
4
crystals selectively
4

Similar Publications

Context: 3,4-Bis(3-nitrofurazan-4-yl) furoxan (DNTF) is a typical low-melting-point, high-energy-density compound that can serve as a cast carrier explosive. Therefore, understanding the safety of DNTF under different casting processes is of great significance for its efficient application. This study employed molecular dynamics simulations to investigate the effects of temperature and pressure on the self-diffusion characteristics and mechanical sensitivity of DNTF.

View Article and Find Full Text PDF

Structural and photoelectric properties of p-i-n photodiodes based on GeSiSn/Si multiple quantum dots both on Si and silicon-on-insulator (SOI) substrates were investigated. Elastic strained state of grown films was demonstrated by x-ray diffractometry. Annealing of p-i-n structures before the mesa fabrication can improve the ideality factor of current-voltage characteristics.

View Article and Find Full Text PDF

Establishing a standardized murine orthotopic intra-rectal model for the study of colorectal adenocarcinoma.

J Gastrointest Oncol

December 2024

Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada.

Background: Orthotopic models offer a more accurate representation of colorectal cancer (CRC) compared to subcutaneous models. Despite promising results from the reported intra-rectal models, establishing a standardized method for CRC research remains challenging due to model variability, hindering comprehensive studies on CRC pathogenesis and treatment modalities, such as brachytherapy. This study aimed to establish a standardized workflow for an orthotopic intra-rectal animal model to induce the growth of colorectal adenocarcinoma in male and female mice.

View Article and Find Full Text PDF

Remote epitaxial crystalline perovskites for ultrahigh-resolution micro-LED displays.

Nat Nanotechnol

January 2025

Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.

The miniaturization of light-emitting diodes (LEDs) is pivotal in ultrahigh-resolution displays. Metal-halide perovskites promise efficient light emission, long-range carrier transport and scalable manufacturing for bright microscale LED (micro-LED) displays. However, thin-film perovskites with inhomogeneous spatial distribution of light emission and unstable surface under lithography are incompatible with the micro-LED devices.

View Article and Find Full Text PDF

Tumor immunotherapy has been widely used clinically, but it is still hindered by weak antitumor immunity and immunosuppressive tumor microenvironment (TME). Here, a kind of simple disodium hydrogen phosphate nanoparticle (Na2HPO4 NP) is prepared to "accelerate" tumor immunotherapy by "increasing throttle" and "relaxing brake" simultaneously. The obtained Na2HPO4 NPs release a large amount of Na+ and HPO42- ions within tumor cells, thereby activating the caspase 1/GSDMD-mediated pyroptosis pathway to achieve immune activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!