Role of the D-loops in allosteric control of ATP hydrolysis in an ABC transporter.

J Phys Chem A

School of Medical and Molecular Biosciences, and iThree Institute, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia.

Published: March 2012

ABC transporters couple ATP hydrolysis to movement of substrates across cell membranes. They comprise two transmembrane domains and two cytosolic nucleotide-binding domains forming two active sites that hydrolyze ATP cooperatively. The mechanism of ATP hydrolysis is controversial and the structural dynamic basis of its allosteric control unknown. Here we report molecular dynamics simulations of the ATP/apo and ATP/ADP states of the bacterial ABC exporter Sav1866, in which the cytoplasmic region of the protein was simulated in explicit water for 150 ns. In the simulation of the ATP/apo state, we observed, for the first time, conformers of the active site with the canonical geometry for an in-line nucleophilic attack on the ATP γ-phosphate. The conserved glutamate immediately downstream of the Walker B motif is the catalytic base, forming a dyad with the H-loop histidine, whereas the Q-loop glutamine has an organizing role. Each D-loop provides a coordinating residue of the attacking water, and comparison with the simulation of the ATP/ADP state suggests that via their flexibility, the D-loops modulate formation of the hydrolysis-competent state. A global switch involving a coupling helix delineates the signal transmission route by which allosteric control of ATP hydrolysis in ABC transporters is mediated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp211139sDOI Listing

Publication Analysis

Top Keywords

atp hydrolysis
16
allosteric control
12
control atp
8
hydrolysis abc
8
abc transporters
8
atp
6
role d-loops
4
d-loops allosteric
4
hydrolysis
4
abc
4

Similar Publications

Background: We recently demonstrated that large extracellular vesicles (EVs) released by Aβ-loaded microglia and carrying Aβ (Aβ-EVs) propagate synaptic dysfunction in the mouse brain by moving at the axon surface (Gabrielli et al., Brain, 2022; Falcicchia et al., Brain Commun, 2023).

View Article and Find Full Text PDF

The eukaryotic helicase MCM2-7, is loaded by ORC, Cdc6 and Cdt1 as a double-hexamer onto replication origins. The insertion of DNA into the helicase leads to partial MCM2-7 ring closure, while ATP hydrolysis is essential for consecutive steps in pre-replicative complex (pre-RC) assembly. Currently it is unknown how MCM2-7 ring closure and ATP-hydrolysis are controlled.

View Article and Find Full Text PDF

The ATP-dependent zinc metalloprotease (FtsH) protein gene family is essential for plant growth, development, and stress responses. Although FtsH genes have been identified in various plant species, the FtsH gene family in wheat (Triticum aestivum) remains unstudied. In this study, we identified 11 TaFtsH genes with uneven chromosomal distribution, significant variations in gene sequence length, and differing intron numbers among individual members.

View Article and Find Full Text PDF

Nucleic Acid Packaging in Viruses.

Subcell Biochem

December 2024

Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.

Viruses shield their genetic information by enclosing the viral nucleic acid inside a protein shell (capsid), in a process known as genome packaging. Viruses follow essentially two main strategies to package their genome: Either they co-assemble their genetic material together with the capsid protein or an empty shell (procapsid) is first assembled and then the genome is pumped inside the capsid by a molecular motor that uses the energy released by ATP hydrolysis. During packaging the viral nucleic acid is highly condensed through a meticulous arrangement in concentric layers inside the capsid.

View Article and Find Full Text PDF

Phosphatases are enzymes that catalyze the hydrolysis of phosphate esters. They play critical roles in diverse biological processes such as extracellular nucleotide homeostasis, transport of molecules across membranes, intracellular signaling pathways, or vertebrate mineralization. Among them, tissue-nonspecific alkaline phosphatase (TNAP) is today increasingly studied, due to its ubiquitous expression and its ability to dephosphorylate a very broad range of substrates and participate in several different biological functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!