Rhodopsin is a visual pigment present in rod cells of retina. It belongs to GPCR family and involves photoisomerization of 11-cis-retinal to all-trans-retinal isomers, conformational changes in rhodopsin and signal transduction cascade to generate a nerve impulse. This signaling pathway has been targeted to eliminate the effect of a mutation (Gly90→Asp) responsible for abnormal activation of G-protein without retinal conformations in the absence of light leading to congenital night blindness. A theoretical model of rhodopsin with induced mutation has been deliberated in order to find potential ligands which can offset this mutational effect. The binding interactions between the target mutated rhodopsin model and potential ligands have been predicted with the help of molecular docking. The results indicated strong functional benefits of ligands as an inhibitor and an agonist for mutated rhodopsin model. Therefore, we propose a new visual cascade model which can initiate the normal signaling of rhodopsin mutant with the help of proposed ligands and can provide a hope for vision in future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3283884 | PMC |
http://dx.doi.org/10.6026/97320630008128 | DOI Listing |
J Cell Sci
January 2025
Department of Ophthalmology and Visual Sciences, University of New Mexico, Albuquerque, New Mexico 87131, Mexico.
The Rab11-Rabin8-Rab8 ciliogenesis complex regulates the expansion of cilia-derived light-sensing organelles, the rod outer segments, via post-Golgi rhodopsin transport carriers (RTCs). Rabin8, an effector of Rab11 and a nucleotide exchange factor (GEF) for Rab8, is phosphorylated at S272 by NDR2 kinase (aka STK38L), a canine erd gene product linked to the human ciliopathy Leber congenital amaurosis (LCA). Here, we define the step at which NDR2 phosphorylated Rabin8 regulates Rab11-Rab8 succession in X.
View Article and Find Full Text PDFBiochemistry
December 2024
Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, California 92697, United States.
Arrestins halt signal transduction by binding to the phosphorylated C-termini of activated G protein-coupled receptors. Arrestin-1, the first subtype discovered, binds to rhodopsin in rod cells. Mutations in , the gene encoding Arrestin-1, are linked to Oguchi disease, characterized by delayed dark adaptation.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Aix Marseille Univ, CNRS, ICR, 13013 Marseille, France.
The automatic rhodopsin modeling (ARM) approach is a computational workflow devised for the automatic buildup of hybrid quantum mechanics/molecular mechanics (QM/MM) models of wild-type rhodopsins and mutants, with the purpose of establishing trends in their photophysical and photochemical properties. Despite the success of ARM in accurately describing the visible light absorption maxima of many rhodopsins, for a few cases, called outliers, it might lead to large deviations with respect to experiments. Applying ARM to rhodopsin (GR), a microbial rhodopsin with important applications in optogenetics, we analyze the origin of such outliers in the absorption energies obtained for GR wild-type and mutants at neutral pH, with a total root-mean-square deviation (RMSD) of 0.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
This study investigates the control of ciliary beat patterns during ammonium chemotaxis in the model ciliate microalga Chlamydomonas reinhardtii. Screening the chemotaxis response of mutant strains with ciliary defects revealed that a strain lacking CAV2, the alpha subunit of the voltage-gated calcium channel, is deficient in ammonium chemotaxis. CAV2 regulates the switching of the ciliary beat pattern from the asymmetric to the symmetric waveform.
View Article and Find Full Text PDFPLoS Negl Trop Dis
November 2024
Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China.
Background: Oviposition site selection is an important component of vector mosquito reproductive biology. The Asian Tiger mosquito, Aedes albopictus, is a major and important vector of arboviruses including Dengue. Previous studies documented the preference of gravid females for small, dark-colored water containers as oviposition sites, which they sought during the twilight period (dusk) of their locomotor activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!