Halitosis affects a large proportion of the population and is, in most cases, caused by the production of volatile sulfur compounds (VSCs), particularly methyl mercaptan and hydrogen sulfide, by specific bacterial species colonizing the oral cavity. In this study, a supercritical extract of Chinese licorice (Glycyrrhiza uralensis), and its major isoflavans, licoricidin and licorisoflavan A, were investigated for their effect on growth, VSC production and protease activity of Porphyromonas gingivalis, Prevotella intermedia and Solobacterium moorei, which have been associated with halitosis. The effects of licorice extract, licoricidin, and licorisoflavan A on VSC production in a saliva model were also tested. We first showed that licoricidin and licorisoflavan A, and to a lesser extent the licorice extract, were effective in inhibiting the growth of all three bacterial species, with minimal inhibitory concentrations in the range of 2-80 µg ml(-1). The licorice extract and the two isolates licoricidin and licorisoflavan A, were able to dose-dependently reduce VSC production by P. gingivalis, Prev. intermedia, and S. moorei as well as by a human saliva model. Although the extract and isolates did not inhibit the proteolytic activity of bacteria, they blocked the conversion of cysteine into hydrogen sulfide by Prev. intermedia. Lastly, the deodorizing effects of the licorice extract, licoricidin, and licorisoflavan A were demonstrated, as they can neutralize P. gingivalis-derived VSCs. Licorisoflavan A (10 µg ml(-1)) was found to be the most effective by reducing VSC levels by 50%. Within the limitations of this study, it can be concluded that a licorice supercritical extract and its major isoflavans (licoricidin and licorisoflavan A) represent natural ingredients with a potential for reducing bacterial VSC production and therefore for controlling halitosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1752-7155/6/1/016006 | DOI Listing |
Drug Target Insights
June 2023
Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam - Saudi Arabia.
Periodontal disease is caused by specific pathogens which results in inflammation of the tooth-supporting structures and subsequently causes the continued breakdown of alveolar bone and periodontal ligament. Licorice () is a perennial herb with substantial medicinal value. Licorice extract is derived from dried, unpeeled stolons and roots of and .
View Article and Find Full Text PDFJ Ayurveda Integr Med
November 2018
Faculty of Dentistry, SEGi University, Kota Damansara, Malaysia.
Oral health influences general well-being and quality of life. Oral diseases can be debilitating and are a major heath concern worldwide. Medicinal plants have been used for thousands of years for treating human diseases.
View Article and Find Full Text PDFFitoterapia
June 2015
Department of Pharmacy, University of Salerno, Via Giovanni Paolo II n. 132, 84084, Fisciano, Salerno, Italy.
A new prenylated isoflavan, iconisoflavan (1), and a new prenylated isoflav-3-ene, iconisoflaven (2) were isolated from the roots of Glycyrrhiza iconica together with four known ones namely (3S)-licoricidin (3), licorisoflavan A (4), topazolin (5) and glycycoumarin (6). The structures were elucidated on the basis of extensive spectroscopic analysis including 1D and 2D NMR as well as HR-MS. Furthermore, the absolute configurations of compounds 1, 3 and 4 were established by electronic circular dichroism (ECD).
View Article and Find Full Text PDFJ Nat Prod
March 2014
Tom's of Maine , 302 Lafayette Center, Kennebunk, Maine 04043, United States.
Continuing investigation of fractions from a supercritical fluid extract of Chinese licorice (Glycyrrhiza uralensis) roots has led to the isolation of 12 phenolic compounds, of which seven were described previously from this extract. In addition to these seven metabolites, four known components, 1-methoxyerythrabyssin II (4), 6,8-diprenylgenistein, gancaonin G (5), and isoglycyrol (6), and one new isoflavan, licorisoflavan C (7), were characterized from this material for the first time. Treatment of licoricidin (1) with palladium chloride afforded larger amounts of 7 and also yielded two new isoflavans, licorisoflavan D (8), which was subsequently detected in the licorice extract, and licorisoflavan E (9).
View Article and Find Full Text PDFJ Breath Res
March 2012
Université Laval, Quebec City, QC, Canada.
Halitosis affects a large proportion of the population and is, in most cases, caused by the production of volatile sulfur compounds (VSCs), particularly methyl mercaptan and hydrogen sulfide, by specific bacterial species colonizing the oral cavity. In this study, a supercritical extract of Chinese licorice (Glycyrrhiza uralensis), and its major isoflavans, licoricidin and licorisoflavan A, were investigated for their effect on growth, VSC production and protease activity of Porphyromonas gingivalis, Prevotella intermedia and Solobacterium moorei, which have been associated with halitosis. The effects of licorice extract, licoricidin, and licorisoflavan A on VSC production in a saliva model were also tested.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!