The homeoprotein EGAM1C was identified in preimplantation mouse embryos and embryonic stem (ES) cells. To explore the impact of EGAM1C on the hallmarks of mouse ES cells, MG1.19 cells stably expressing EGAM1C at levels similar to those in blastocysts were established using an episomal expression system. In the presence of leukemia inhibitory factor (+LIF), control transfectants with an empty vector formed flattened cell colonies, while Egam1c transfectants formed compacted colonies with increased E-CADHERIN expression. In Egam1c transfectants, the cellular contents of POU5F1 (OCT4), SOX2, TBX3, and NANOG increased. Cell growth was accelerated in an undifferentiated state sustained by LIF and in the course of differentiation. During clonal proliferation, EGAM1C stabilized the undifferentiated state. In adherent culture conditions, EGAM1C partly inhibited the progression of differentiation at least within a 4-day culture period in the presence of retinoic acid by preventing the downregulation of LIF signaling with a robust increase in TBX3 expression. Conversely, EGAM1C enhanced the expression of lineage marker genes Fgf5 (epiblast), T (mesoderm), Gata6 (primitive endoderm), and Cdx2 (trophectoderm) in -LIF conditions. In embryoid bodies expressing EGAM1C, the expression of marker genes for extraembryonic cell lineages, including Tpbpa (spongiotrophoblast) and Plat (parietal endoderm), increased. These results demonstrated that the ectopic expression of EGAM1C is capable of affecting the stabilization of an undifferentiated state and the progression of differentiation in MG1.19 ES cells, in addition to affecting cellular morphology and growth.

Download full-text PDF

Source
http://dx.doi.org/10.1530/REP-11-0379DOI Listing

Publication Analysis

Top Keywords

mg119 cells
12
undifferentiated state
12
egam1c
11
ectopic expression
8
homeoprotein egam1c
8
morphology growth
8
embryonic stem
8
expressing egam1c
8
egam1c transfectants
8
expression egam1c
8

Similar Publications

Cancer is one of the leading causes of death worldwide. In recent years, immune checkpoint inhibitor therapies, in addition to standard immuno- or chemotherapy and surgical approaches, have massively improved the outcome for cancer patients. However, these therapies have their limitations and improved strategies, including access to reliable cancer vaccines, are needed.

View Article and Find Full Text PDF

Gestational trophoblastic disease (GTD) describes a group of rare benign and cancerous lesions originating from the trophoblast cells of the placenta. These neoplasms are unconventional entities, being one of the few instances in which cancer develops from the cells of another organism, the foetus. Although this condition was first described over 100 years ago, the specific genetic and non-genetic drivers of this disease remain unknown to this day.

View Article and Find Full Text PDF

ERMP1 as a newly identified ER stress gatekeeper in chronic kidney disease.

Am J Physiol Renal Physiol

January 2025

Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

ERMP1 is involved in the Unfolded Protein Response (UPR) pathway in response to endoplasmic reticulum (ER) stress. Given the pivotal role of ER stress in the pathogenesis of acute and chronic kidney diseases, we hypothesized that ERMP1 could be instrumental in the development of renal injury. analysis of RNA sequencing datasets from renal biopsies were exploited to assess the expression of ERMP1 in the kidney under normal or pathological conditions.

View Article and Find Full Text PDF

Objectives: Hepatocellular carcinoma (HCC) represents the third-most prevalent cancer in humans worldwide. The current study's objective is to search for the potentiality of H. Wendl () leaf extract in a nanoemulsion (NE) form in enhancing radiotherapy against HCC induced in rats using diethylnitrosamine (DEN).

View Article and Find Full Text PDF

Introduction: Mitochondria and angiogenesis play key roles in multiple myeloma (MM) development, but their interrelated genes affecting MM prognosis are under-studied.

Methods: We analyzed TCGA_MMRF and GSE4581 datasets to identify four genes - CCNB1, CDC25C, HSP90AA1, and PARP1 - that significantly correlate with MM prognosis, with high expression indicating poor outcomes.

Results: A prognostic signature based on these genes stratified patients into high- and low-risk groups, with the latter showing better survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!