Isolation and characterization of transcription fidelity mutants.

Biochim Biophys Acta

Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.

Published: July 2012

Accurate transcription is an essential step in maintaining genetic information. Error-prone transcription has been proposed to contribute to cancer, aging, adaptive mutagenesis, and mutagenic evolution of retroviruses and retrotransposons. The mechanisms controlling transcription fidelity and the biological consequences of transcription errors are poorly understood. Because of the transient nature of mRNAs and the lack of reliable experimental systems, the identification and characterization of defects that increase transcription errors have been particularly challenging. In this review we describe novel genetic screens for the isolation of fidelity mutants in both Saccharomyces cerevisiae and Escherichia coli RNA polymerases. We obtained and characterized two distinct classes of mutants altering NTP misincorporation and transcription slippage both in vivo and in vitro. Our study not only validates the genetic schemes for the isolation of RNA polymerase mutants that alter fidelity, but also sheds light on the mechanism of transcription accuracy. This article is part of a Special Issue entitled: Chromatin in time and space.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511983PMC
http://dx.doi.org/10.1016/j.bbagrm.2012.02.005DOI Listing

Publication Analysis

Top Keywords

transcription
8
transcription fidelity
8
fidelity mutants
8
transcription errors
8
isolation characterization
4
characterization transcription
4
fidelity
4
mutants
4
mutants accurate
4
accurate transcription
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!