Functional recruitment of newborn hippocampal neurons after experimental stroke.

Neurobiol Dis

Hans Berger Department of Neurology, Jena University Hospital, Erlanger Allee 101, D-07747 Jena, Germany.

Published: May 2012

The adult brain responds to diverse pathologies such as stroke with increased generation of neurons in the dentate gyrus of the hippocampus. However, only little is known regarding the functional integration of newborn neurons into pre-existing neuronal circuits. In this study, we investigated whether newborn neurons generated after experimental stroke are recruited for different behavioral tasks. Adult mice received photochemical cortical infarcts in the sensorimotor cortex and proliferating cells were labeled using the proliferation marker, bromodeoxyuridine. Eight weeks after stroke induction, the animals were trained to perform either a spatiotemporal task or a sensorimotor task. Immediate early gene expression (c-fos, Zif268) in newborn neurons was analyzed directly after the last session. Using this approach, we demonstrate that post-stroke generated neurons are recruited within the hippocampal networks. The sensorimotor task activates significantly more newborn neurons compared to the spatiotemporal task. Further experiments employing the two well-established stimulators of neurogenesis, enriched environment and voluntary wheel running, both significantly increase post-stroke neurogenesis in the dentate gyrus but do not affect the percentage of recruited neurons compared to controls. Significantly, the spatiotemporal task leads to a higher portion of activated newborn neurons in the granule cell layer, suggesting a specific spatial activation pattern of new neurons in the dentate gyrus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2012.02.007DOI Listing

Publication Analysis

Top Keywords

newborn neurons
20
dentate gyrus
12
spatiotemporal task
12
neurons
10
experimental stroke
8
neurons dentate
8
sensorimotor task
8
neurons compared
8
newborn
6
task
5

Similar Publications

Understanding the mechanics linking cortical folding and brain connectivity is crucial for both healthy and abnormal brain development. Despite the importance of this relationship, existing models fail to explain how growing axon bundles navigate the stress field within a folding brain or how this bidirectional and dynamic interaction shapes the resulting surface morphologies and connectivity patterns. Here, we propose the concept of "axon reorientation" and formulate a mechanical model to uncover the dynamic multiscale mechanics of the linkages between cortical folding and connectivity development.

View Article and Find Full Text PDF

Neurodevelopmental impairments associated with congenital heart disease (CHD) may arise from perturbations in brain developmental pathways, including the formation of sulcal patterns. While genetic factors contribute to sulcal features, the association of noncoding variants (ncDNVs) with sulcal patterns in people with CHD remains poorly understood. Leveraging deep learning models, we examined the predicted impact of ncDNVs on gene regulatory signals.

View Article and Find Full Text PDF

Adult neurogenesis has most often been studied in the hippocampus and subventricular zone-olfactory bulb, where newborn neurons contribute to a variety of behaviors. A handful of studies have also investigated adult neurogenesis in other brain regions, but relatively little is known about the properties of neurons added to non-canonical areas. One such region is the striatum.

View Article and Find Full Text PDF

Hirschsprung's disease (HSCR) is characterized by congenital absence of ganglion cells in the gastrointestinal tract, which leads to impaired defecation, constipation and intestinal obstruction. The current diagnosis of HSCR is based on Rectal Suction Biopsies (RSBs), which could be complex in newborns. Occasionally, there is a delay in diagnosis that can increase the risk of clinical complications.

View Article and Find Full Text PDF

hESC-derived extracellular vesicles enriched with MFGE-8 and the GSH redox system act as senotherapeutics for neural stem cells in ischemic stroke.

Free Radic Biol Med

January 2025

Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea. Electronic address:

Human embryonic stem cells (hESCs) and their extracellular vesicles (EVs) hold significant potential for tissue repair and regeneration. Neural stem cells (NSCs) in the adult brain often acquire senescent phenotypes after ischemic injuries, releasing neurodegenerative senescence-associated secretory phenotype factors. In this study, we investigated the senotherapeutic effects of hESC-EVs on NSCs and confirmed their neuroprotective effects in neurons via rejuvenation of NSC secretions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!