Highly magnetizable superparamagnetic colloidal aggregates with narrowed size distribution from ferrofluid emulsion.

J Colloid Interface Sci

Institute of Particle Technology, Friedrich-Alexander-University, Erlangen-Nuremberg, Cauerstr. 4, 91058 Erlangen, Germany.

Published: May 2012

The formation of spherical superparamagnetic colloidal aggregates of magnetite nanoparticles by emulsification of a ferrofluid and subsequent solvent evaporation has been systematically studied. The colloidal aggregates occur as a dense sphere with magnetite nanoparticles randomly packed and preserved particle-particle separation due to chemisorbed oleic acid. The voids between nanoparticles are filled with solvent and free oleic acid. The latter was found to influence the formation of colloidal aggregates and their surface properties. The choice of surfactant, whether low molecular weight or polymeric, was shown to lead to the colloidal aggregates having tailored interfacial behavior. Magnetization measurements at ambient temperature revealed that the magnetite colloidal aggregates preserve the superparamagnetic properties of the starting nanoparticle units and show high saturation magnetization values up to 57 emu/g. The size distribution of magnetite nanoparticle colloidal aggregates produced by such an approach was found to be a function of emulsion droplet breakup-coalescence and stabilization kinetics and therefore is influenced by the emulsification process conditions and concentrations of the emulsion compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2012.01.057DOI Listing

Publication Analysis

Top Keywords

colloidal aggregates
28
superparamagnetic colloidal
8
size distribution
8
magnetite nanoparticles
8
oleic acid
8
colloidal
7
aggregates
7
highly magnetizable
4
magnetizable superparamagnetic
4
aggregates narrowed
4

Similar Publications

Shear-induced rotation enhances protein adsorption.

Colloids Surf B Biointerfaces

January 2025

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:

Theories predicted that shear promotes desorption, but due to the presence of factors such as aggregation effects, it is difficult to observe how shear influences the adsorption and desorption of individual protein molecules. In this study, we employed high-throughput single-molecule tracking and molecular dynamics simulations to investigate how shear flow affects the adsorption kinetics of plasma proteins (including human serum albumin, immunoglobulin G, and fibrinogen) at solid-liquid interfaces. Over the studied shear rate range of 0 - 10 s, shear stress did not trigger the protein desorption.

View Article and Find Full Text PDF

Co-Flocculation of Mixed-Sized Colloidal Particles in Aqueous Dispersions Under a DC Electric Field.

Materials (Basel)

December 2024

Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan.

When an electric field is applied to or removed from colloidal particle aqueous dispersions, a reversible increase in sedimentation velocity of the colloidal particles, referred to as the Electrically Induced Rapid Separation (ERS) effect, is observed. While electrophoresis and other interfacial electrokinetic phenomena under applied electric fields are well-studied, the phenomena of particle aggregation and re-dispersion caused by the application and removal of the field remain largely unexplored despite their significance. Experiments using mixed aqueous dispersions of poly (methyl methacrylate) (PMMA) particles of different sizes revealed that applying an electric field induced the formation of co-flocs involving both large and small particles, significantly enhancing the sedimentation velocity.

View Article and Find Full Text PDF

Upconverting/magnetic Janus-like nanoparticles integrated into spiropyran micelle-like nanocarriers for NIR light- and pH- responsive drug delivery, photothermal therapy and biomedical imaging.

Colloids Surf B Biointerfaces

January 2025

Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico. Electronic address:

The integration of multiple functionalities into single theranostic platforms offers new opportunities for personalized and minimally invasive clinical interventions, positioning these materials as highly promising tools in modern medicine. Thereby, magneto-luminescent Janus-like nanoparticles (JNPs) were developed herein, and encapsulated into near-infrared (NIR) light- and pH- responsive micelle-like aggregates (Mic) for simultaneous magnetic targeting, biomedical imaging, photothermal therapy, and pH- NIR-light activated drug delivery. The JNPs consisted of NaYF:Yb,Tm upconverting nanoparticles (UCNPs) on which a well-differentiated magnetite structure (MNPs) grew epitaxially.

View Article and Find Full Text PDF

The results of a comprehensive investigation into the structure and properties of nanodiamond soot (NDS), obtained from the detonation of various explosive precursors (trinitrotoluene, a trinitrotoluene/hexogen mixture, and tetryl), are presented. The colloidal behavior of the NDS particles in different liquid media was studied. The results of the scanning electron microscopy, dynamic light scattering, zeta potential measurements, and laser diffraction analysis suggested a similarity in the morphology of the NDS particle aggregates and agglomerates.

View Article and Find Full Text PDF

Linking the macroscopic flow properties and nanoscopic structure is a fundamental challenge to understanding, predicting, and designing disordered soft materials. Under small stresses, these materials are soft solids, while larger loads can lead to yielding and the acquisition of plastic strain, which adds complexity to the task. In this work, we connect the transient structure and rheological memory of a colloidal gel under cyclic shearing across a range of amplitudes a generalized memory function using rheo-X-ray photon correlation spectroscopy (rheo-XPCS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!