Cellular senescence and cancer chemotherapy resistance.

Drug Resist Updat

Fred Hutchinson Cancer Research Center, Seattle, WA 91809, United States.

Published: August 2012

Innate or acquired resistance to cancer therapeutics remains an important area of biomedical investigation that has clear ramifications for improving cancer specific death rates. Importantly, clues to key resistance mechanisms may lie in the well-orchestrated and highly conserved cellular and systemic responses to injury and stress. Many anti-neoplastic therapies typically rely on DNA damage, which engages potent DNA damage response signaling pathways that culminate in apoptosis or growth arrest at checkpoints to allow for damage repair. However, an alternative cellular response, senescence, can also be initiated when challenged with these internal/external pressures and in ideal situations acts as a self-protecting mechanism. Senescence-induction therapies are an attractive concept in that they represent a normal, highly conserved and commonly invoked tumor-suppressing response to overwhelming genotoxic stress or oncogene activation. Yet, such approaches should ensure that senescence by-pass or senescence re-emergence does not occur, as emergent cells appear to have highly drug resistant phenotypes. Further, cell non-autonomous senescence responses may contribute to therapy-resistance in certain circumstances. Here we provide an overview of mechanisms by which cellular senescence plausibly contributes to therapy resistance and concepts by which senescence responses can be influenced to improve cancer treatment outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3348393PMC
http://dx.doi.org/10.1016/j.drup.2012.01.002DOI Listing

Publication Analysis

Top Keywords

cellular senescence
8
highly conserved
8
dna damage
8
senescence responses
8
senescence
6
cellular
4
cancer
4
senescence cancer
4
cancer chemotherapy
4
resistance
4

Similar Publications

The Dual Role of Cellular Senescence in Macrophages: Unveiling the Hidden Driver of Age-Related Inflammation in Kidney Disease.

Int J Biol Sci

January 2025

Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China.

Aging is a complex biological process that involves the gradual decline of cellular, tissue, and organ functions. In kidney, aging manifests as tubular atrophy, glomerulosclerosis, and progressive renal function decline. The critical role of senescence-associated macrophage in diseases, particularly kidney diseases, is increasingly recognized.

View Article and Find Full Text PDF

Limited restoration of T cell subset distribution and immune function in older people living with HIV-1 receiving HAART.

Immun Ageing

January 2025

State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.

Background: Older people living with HIV-1 (PLWH) experience a dual burden from the combined effects of aging and HIV-1 infection, resulting in significant immune dysfunction. Despite receiving HAART, immune reconstitution is not fully optimized. The objective of this study was to investigate the impact of aging and HAART on T cell subsets and function in PLWH across different age groups, thereby providing novel insights into the prognosis of older PLWH.

View Article and Find Full Text PDF

Errors during cell division lead to aneuploidy, which is associated with genomic instability and cell transformation. In response to aneuploidy, cells activate the tumour suppressor p53 to elicit a surveillance mechanism that halts proliferation and promotes senescence. The molecular sensors that trigger this checkpoint are unclear.

View Article and Find Full Text PDF

Targeting p97/Valosin-Containing Protein Promotes Hepatic Stellate Cell Senescence and Mitigates Liver Fibrosis.

DNA Cell Biol

January 2025

Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.

Liver fibrosis, one of the main histological determinants of various chronic liver diseases, currently lacks effective treatment. Hepatic stellate cells (HSCs) are pivotal in the production of extracellular matrix and amplify the fibrogenic response. Inhibiting the activation of HSCs or promoting the senescence of activated HSCs is crucial for the regression of liver fibrosis.

View Article and Find Full Text PDF

Acute liver failure (ALF) is marked by a substantial generation of reactive oxygen species (ROS), which can induce both cellular senescence and a pronounced inflammatory response. Senescent cells secrete factors collectively termed the senescence-associated secretory phenotype (SASP), which exacerbate inflammation, while inflammation can reciprocally promote cellular senescence. Quercetin (Que), recognized for its ROS-scavenging capabilities, holds the potential for anti-inflammatory and anti-senescent effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!