Objective: To quantify the perturbation due to the presence of a measuring depth electrode on the intracranial electric potential distribution, and to study the effect of the heterogeneity and anisotropy of the brain tissues' electric conductivity.
Methods: The governing differential equations are solved with the Boundary Elements Method to compute the perturbation on the electric potential distribution caused by the presence of the measuring electrode, and with the Finite Elements Method to simulate measurements in an heterogeneous anisotropic brain model.
Results: The perturbation on the measured electric potential is negligible if the source of electric activity is located more than approximately 1mm away from the electrode. The error induced by this perturbation in the estimation of the source position is below 1mm in all tested situations. The results hold for different sizes of the electrode's contacts. The effect of the brain's heterogeneity and anisotropy is more important. In a particular example simulated dipolar sources in the gray matter show localization differences of up to 5mm between homogeneous isotropic and heterogeneous anisotropic brain models.
Conclusions: It is not necessary to include detailed electrode models in order to solve the stereo-EEG (sEEG) forward and inverse problems. The heterogeneity and anisotropy of the brain electric conductivity should be modeled if possible. The effect of using an homogeneous isotropic brain model approximation should be studied in a case by case basis, since it depends on the electrode positions, the subject's electric conductivity map, and the source configuration.
Significance: This simulation study is helpful for interpreting the sEEG measurements, and for choosing appropriate electrode and brain models; a necessary first step in any attempt to solve the sEEG inverse problem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinph.2012.01.019 | DOI Listing |
Nanotechnology
January 2025
Centre for Analysis and Synthesis, NanoLund, Lund University, Box 124, Lund, 221 00, SWEDEN.
Developing a reliable procedure for the growth of III-V nanowires (NW) on silicon (Si) substrates remains a significant challenge, as current methods rely on trial-and-error approaches with varying interpretations of critical process steps such as sample preparation, Au-Si alloy formation in the growth reactor, and nanowire alignment. Addressing these challenges is essential for enabling high-performance electronic and optoelectronic devices that combine the superior properties of III-V NW semiconductors with the well-established Si-based technology. Combining conventional scalable growth methods, such as Metalorganic Chemical Vapor Deposition (MOCVD) with in situ characterization using Environmental Transmission Electron Microscopy (ETEM-MOCVD) enables a deeper understanding of the growth dynamics, if that knowledge is transferable to the scalable processes.
View Article and Find Full Text PDFACS Nano
January 2025
School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
Single-crystal Au(111), renowned for its chemically inert surface, long-range "herringbone" reconstruction, and high electrical conductivity, has long served as an exemplary template in diverse fields, , crystal epitaxy, electronics, and electrocatalysis. However, commercial Au(111) products are high-priced and limited to centimeter sizes, largely restricting their broad applications. Herein, a low-cost, high-reproducible method is developed to produce 4 in.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Science and Engineering, School of Computer Science, University of Hull, Hull, United Kingdom.
Mold defects pose a significant risk to the preservation of valuable fine art paintings, typically arising from fungal growth in humid environments. This paper presents a novel approach for detecting and categorizing mold defects in fine art paintings. The technique leverages a feature extraction method called Derivative Level Thresholding to pinpoint suspicious regions within an image.
View Article and Find Full Text PDFPLoS One
January 2025
Cardiovascular Center, Division of Cardiology, Korea University Guro Hospital, Seoul, Republic of Korea.
Background: The phase angle (PhA) in bioelectrical impedance analysis (BIA) reflects the cell membrane integrity or body fluid equilibrium. We examined how the PhA aligns with previously known markers of acute heart failure (HF) and assessed its value as a screening tool.
Methods: PhA was measured in 50 patients with HF and 20 non-HF controls along with the edema index (EI), another BIA parameter suggestive of edema.
PLoS One
January 2025
School of Hydraulic Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, Zhejiang, China.
Spillway chutes are critical in dam flood control, particularly in high dams where high water heads and large discharge in narrow canyons amplify the demand for safe discharging. For large unit discharges in spillways, aeration protection is essential to prevent cavitation erosion, but challenges arise from air duct choking in the traditional spillway and nonaerated regions in the stepped spillway. This paper introduces a novel spillway called the pre-aerated stilling basin spillway (PSBS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!