The successor representation was introduced into reinforcement learning by Dayan ( 1993 ) as a means of facilitating generalization between states with similar successors. Although reinforcement learning in general has been used extensively as a model of psychological and neural processes, the psychological validity of the successor representation has yet to be explored. An interesting possibility is that the successor representation can be used not only for reinforcement learning but for episodic learning as well. Our main contribution is to show that a variant of the temporal context model (TCM; Howard & Kahana, 2002 ), an influential model of episodic memory, can be understood as directly estimating the successor representation using the temporal difference learning algorithm (Sutton & Barto, 1998 ). This insight leads to a generalization of TCM and new experimental predictions. In addition to casting a new normative light on TCM, this equivalence suggests a previously unexplored point of contact between different learning systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1162/NECO_a_00282 | DOI Listing |
Commun Psychol
January 2025
Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
How do people model the world's dynamics to guide mental simulation and evaluate choices? One prominent approach, the Successor Representation (SR), takes advantage of temporal abstraction of future states: by aggregating trajectory predictions over multiple timesteps, the brain can avoid the costs of iterative, multi-step mental simulation. Human behavior broadly shows signatures of such temporal abstraction, but finer-grained characterization of individuals' strategies and their dynamic adjustment remains an open question. We developed a task to measure SR usage during dynamic, trial-by-trial learning.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Cell and Developmental Biology, University College London, London, UK.
The successor representation has emerged as a powerful model for understanding mammalian navigation and memory; explaining the spatial coding properties of hippocampal place cells and entorhinal grid cells. However, the diverse spatial responses of subicular neurons, the primary output of the hippocampus, have eluded a unified account. Here, we demonstrate that incorporating rodent behavioural biases into the successor representation successfully reproduces the heterogeneous activity patterns of subicular neurons.
View Article and Find Full Text PDFNeural Comput
October 2024
Kempner Institute for the Study of Natural and Artificial Intelligence, and Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA 02134, U.S.A.
PeerJ Comput Sci
May 2024
Faculty of Computing, Riphah International University, Islamabad, Pakistan.
Background: Concrete, a fundamental construction material, stands as a significant consumer of virgin resources, including sand, gravel, crushed stone, and fresh water. It exerts an immense demand, accounting for approximately 1.6 billion metric tons of Portland and modified Portland cement annually.
View Article and Find Full Text PDFNeural Comput
June 2024
Department of Psychology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
The successor representation is known to relate to temporal associations learned in the temporal context model (Gershman et al., 2012), and subsequent work suggests a wide relevance of the successor representation across spatial, visual, and abstract relational tasks. I demonstrate that the successor representation and purely associative learning have an even deeper relationship than initially indicated: Hebbian temporal associations are an unnormalized form of the successor representation, such that the two converge on an identical representation whenever all states are equally frequent and can correlate highly in practice even when the state distribution is nonuniform.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!