Putting the brakes on a cycle: bottom-up effects damp cycle amplitude.

Ecol Lett

Plant and Invertebrate Ecology, Rothamsted Research, Harpenden, AL5 2JQ, UKDepartment of Entomology, University of Minnesota, St. Paul, MN 55108, USABiomathematics and Bioinformatics, Rothamsted Research, Harpenden, AL5 2JQ, UKDepartment of Crop Sciences, University of Illinois, Urbana, IL 61801, USAMinnesota Department of Agriculture, St Paul, MN 55107, USAWisconsin Department of Agriculture, Trade and Consumer Protection, Madison, WI 53718, USA.

Published: April 2012

AI Article Synopsis

  • Pest population density impacts agroecosystem health, especially when pests like the European corn borer exhibit persistent cycles.
  • Researchers studied data from Minnesota and Wisconsin to see if the use of transgenic Bt maize could reduce these cycles.
  • Results showed that high adoption of Bt maize led to reduced pest cycles in Minnesota, while less use in Wisconsin allowed for persistent but dampened oscillations, highlighting the role of plant quality in managing pest outbreaks.

Article Abstract

Pest population density oscillations have a profound effect on agroecosystem functioning, particularly when pests cycle with epidemic persistence. Here, we ask whether landscape-level manipulations can be used to restrict the cycle amplitude of the European corn borer moth [Ostrinia nubilalis (Hübner)], an economically important maize pest. We analysed time series from Minnesota (1963-2009) and Wisconsin (1964-2009) to quantify the extent of regime change in the US Corn Belt where rates of transgenic Bt maize adoption varied. The introduction of Bt maize explained cycle damping when the adoption of the crop was high (Minnesota); oscillations were damped but continued to persist when Bt maize was used less intensely (Wisconsin). We conclude that host plant quality is key to understanding both epidemic persistence and the success of intervention strategies. In particular, the dichotomy in maize management between states is thought to limit the spatial autocorrelation of O. nubilalis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1461-0248.2011.01739.xDOI Listing

Publication Analysis

Top Keywords

cycle amplitude
8
epidemic persistence
8
cycle
5
maize
5
putting brakes
4
brakes cycle
4
cycle bottom-up
4
bottom-up effects
4
effects damp
4
damp cycle
4

Similar Publications

Elucidating the effect of chitosan microgel characteristics on the large amplitude oscillatory shear (LAOS) behavior of their stabilized high internal phase emulsions using the sequence of physical processes (SPP) approach and comparison with mayonnaise.

Int J Biol Macromol

January 2025

Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Microbiology in Hubei, Key Laboratory of Fermentation Engineering (Ministry of Education), Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Wuhan 430068, China. Electronic address:

Chitosan microgels (h-CSMs) were prepared by cross-linking hydrophobically modified chitosan with sodium phytate (SP). Emulsions stabilized by h-CSMs with different inter-phase fraction, microgel concentration and cross-linking density were studied of their microstructural and rheological properties. In particular, the large amplitude oscillatory shear (LAOS) of the high internal phase emulsions (HIPEs) stabilized by h-CSMs were systematically analyzed using the Fourier transform with Chebyshev polynomials (FTC) and sequence of physical processes (SPP) methods, to explore their nonlinear rheological properties.

View Article and Find Full Text PDF

Aims: Mutations in the cardiac ryanodine receptor (RyR2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). This study investigates the underlying molecular mechanisms for CPVT mutations within the RyR2 N-terminus domain (NTD).

Methods And Results: We consulted the high-resolution RyR2 structure in both open and closed configuration to identify mutations G357S/R407I and A77T, which lie within the NTD intra- and inter-subunit interface with the Core Solenoid (CSol), respectively.

View Article and Find Full Text PDF

As an attractive optical/heat dynamic management technology, reversible metal electrodeposition/dissolution electrochromism (RME-EC) shows many advantages, including high optical modulation amplitude, wide modulation band, and color neutrality, but also suffers from performance degradation because of uneven dendritic metal deposition as well as the formation/accumulation of isolated metal debris. In this paper, a facile RME-EC system is established in a green and affordable aqueous electrolyte, by making good use of the nondendritic Ni-Cu codeposition. Furthermore, an in situ self-healing strategy is further established by activating the Br/Br couple of the Br-containing electrolyte to improve the EC performance.

View Article and Find Full Text PDF

As is widely accepted, cumulative strain and improvement mechanisms of stabilized soil are critical factors for the long-term reliable operation of expressways and high-speed railways. Based on relevant research findings, xanthan gum biopolymer is regarded as a green and environmentally friendly curing agent in comparison to traditional stabilizers, such as cement, lime, and fly ash. However, little attention has been devoted to the cumulative strain and improvement mechanisms of soil reinforced by xanthan gum biopolymer under traffic loading.

View Article and Find Full Text PDF

Near-Field Direct Writing Based on Piezoelectric Micromotion for the Programmable Manufacturing of Serpentine Structures.

Micromachines (Basel)

December 2024

Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control, School of Automation, Guangdong University of Technology, Guangzhou 510006, China.

Serpentine microstructures offer excellent physical properties, making them highly promising in applications in stretchable electronics and tissue engineering. However, existing fabrication methods, such as electrospinning and lithography, face significant challenges in producing microscale serpentine structures that are cost-effective, efficient, and controllable. These methods often struggle with achieving precise control over fiber morphology and scalability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!