A new class of selenium and selenium-sulfur (Se(x)S(y))-based cathode materials for room temperature lithium and sodium batteries is reported. The structural mechanisms for Li/Na insertion in these electrodes were investigated using pair distribution function (PDF) analysis. Not only does the Se electrode show promising electrochemical performance with both Li and Na anodes, but the additional potential for mixed Se(x)S(y) systems allows for tunable electrodes, combining the high capacities of S-rich systems with the high electrical conductivity of the d-electron containing Se. Unlike the widely studied Li/S system, both Se and Se(x)S(y) can be cycled to high voltages (up to 4.6 V) without failure. Their high densities and voltage output offer greater volumetric energy densities than S-based batteries, opening possibilities for new energy storage systems that can enable electric vehicles and smart grids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja211766q | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!