The binding of an alkene by Ni(tfd)(2) [tfd = S(2)C(2)(CF(3))(2)] is one of the most intriguing ligand-based reactions. In the presence of the anionic, reduced metal complex, the primary product is an interligand adduct, while in the absence of the anion, dihydrodithiins and metal complex decomposition products are preferred. New kinetic (global analysis) and computational (DFT) data explain the crucial role of the anion in suppressing decomposition and catalyzing the formation of the interligand product through a dimetallic complex that appears to catalyze alkene addition across the Ni-S bond, leading to a lower barrier for the interligand adduct.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja2107965DOI Listing

Publication Analysis

Top Keywords

metal complex
12
alkene addition
8
reduced metal
8
interligand adduct
8
complex
5
mechanism alkene
4
addition nickel
4
nickel bisdithiolene
4
bisdithiolene complex
4
complex role
4

Similar Publications

The copolymerization of ethylene with polar monomers presents a significant challenge. While palladium catalysts have shown promise, nickel catalysts are more economical but suffer from poor activity. Previous studies suggest that the isomerization step involved in the nickel-catalyzed polymerization may influence the catalyst activities.

View Article and Find Full Text PDF

The reactions of LAlH (L = HC(CMeNAr), Ar = 2,6-PrCH) (1) with diphenylphosphane oxide [PhP(O)H], diphenylphosphinamide [PhP(O)NH], and diaryl/alkyl phosphane [(RO)P(O)H (R = Ph, or Pr)] afford their corresponding compounds with compositions LAl(H)OP(Ph) (2), LAl[OP(Ph)] (3), LAl{[N(H)P(O)(Ph)][OP(Ph)]} (4), LAl(OPr) (5), and LAl(OPh) (6), respectively. These reactions probably undergo a process of dehydrogenation coupling, deaminating dehydrogenation coupling, or chain-breaking coupling. It is noteworthy to mention that the reaction of compound 1 with 2 equiv.

View Article and Find Full Text PDF

Infrared Ion Spectroscopy of Gaseous [Cu(2,2'-Bipyridine)]: Investigation of Jahn-Teller Elongation Versus Compression.

J Phys Chem A

January 2025

Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.

Symmetry breaking is ubiquitous in chemical transformations and affects various physicochemical properties of materials and molecules; Jahn-Teller (JT) distortion of hexa-coordinated transition-metal-ligand complexes falls within this paradigm. An uneven occupancy of degenerate 3d-orbitals forces the complex to adopt an axially elongated or compressed geometry, lowering the symmetry of the system and lifting the degeneracy. Coordination complexes of Cu are known to exhibit axial elongation, while compression is far less common, although this may be due to the lack of rigorous experimental verification.

View Article and Find Full Text PDF

Terminal metal-phosphorus (M-P) complexes are of significant contemporary interest as potential platforms for P-atom transfer (PAT) chemistry. Decarbonylation of metal-phosphaethynolate (M-PCO) complexes has emerged as a general synthetic approach to terminal M-P complexes. M-P complexes that are stabilized by strong M-P multiple bonds are kinetically persistent and isolable.

View Article and Find Full Text PDF

This article presents new data on the integrated use of colloidal solutions of nanoparticles and low-intensity laser radiation on the biosynthetic activity of the medicinal mushroom . Traditional mycological methods, colloidal solutions of biogenic metals, and unique photobiological methods have also been used. It was found that colloidal solutions of nanoparticles of all metals used increased the growth characteristics of (55-60%), while irradiation of the fungal inoculum with laser light in a medium with nanoparticles reduced the growth activity of mycelia by 12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!