Sequestration of uranium (U) by magnetite is a potentially important sink for U in natural and contaminated environments. However, molecular-scale controls that favor U(VI) uptake including both adsorption of U(VI) and reduction to U(IV) by magnetite remain poorly understood, in particular, the role of U(VI)-CO(3)-Ca complexes in inhibiting U(VI) reduction. To investigate U uptake pathways on magnetite as a function of U(VI) aqueous speciation, we performed batch sorption experiments on (111) surfaces of natural single crystals under a range of solution conditions (pH 5 and 10; 0.1 mM U(VI); 1 mM NaNO(3); and with or without 0.5 mM CO(3) and 0.1 mM Ca) and characterized surface-associated U using grazing incidence extended X-ray absorption fine structure spectroscopy (GI-EXAFS), grazing incidence X-ray diffraction (GI-XRD), and scanning electron microscopy (SEM). In the absence of both carbonate ([CO(3)](T), denoted here as CO(3)) and calcium (Ca), or in the presence of CO(3) only, coexisting adsorption of U(VI) surface species and reduction to U(IV) occurs at both pH 5 and 10. In the presence of both Ca and CO(3), only U(VI) adsorption (VI) occurs. When U reduction occurs, nanoparticulate UO(2) forms only within and adjacent to surface microtopographic features such as crystal boundaries and cracks. This result suggests that U reduction is limited to defect-rich surface regions. Further, at both pH 5 and 10 in the presence of both CO(3) and Ca, U(VI)-CO(3)-Ca ternary surface species develop and U reduction is inhibited. These findings extend the range of conditions under which U(VI)-CO(3)-Ca complexes inhibit U reduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es203877x | DOI Listing |
Front Plant Sci
December 2024
Institute of Soil and Fertilizer and Agricultural Sparing Water, Xinjiang Academy of Agricultural Science, Urumqi, China.
Introduction: To address the scarcity of agricultural phosphorus (P) fertilizers and reduce phosphorus accumulation in wastewater, this study employed iron-modified biochar (Fe-B) to adsorb phosphorus from water. The phosphorus-loaded iron-modified biochar (Fe-BP) was subsequently applied to peanut fields. Batch experiments were conducted to determine the optimal adsorption parameters and mechanism of Fe-B for phosphate ions (PO ).
View Article and Find Full Text PDFJACS Au
December 2024
Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland.
There is an urgent need for inexpensive, functional materials that can capture and release CO under industrial conditions. In this context, MgO is a highly promising, earth-abundant CO sorbent. However, despite its favorable carbonation thermodynamics and potential for high gravimetric CO uptakes, MgO-based CO sorbents feature slow carbonation kinetics, limiting their CO uptake during typical industrial contact times.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China. Electronic address:
Peroxyacetic acid (PAA), as an oxidizing agent, has gained significant attention in the field of advanced oxidation because of its low toxicity and high degradation capacity. In this study, cobalt-iron-based Prussian blue analogs (Co-PBAs) were utilized for the first time to activate PAA for tetracycline degradation. In the Co-PBAs/PAA system, organic radicals (RO•) and high-valent metal oxides are mainly produced.
View Article and Find Full Text PDFWater Res
November 2024
Dipartimento di Chimica, Università di Torino, Torino, Italy.
Langmuir
December 2024
Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.
The advanced oxidation process based on S(IV) has garnered increasing attention, owing to its efficiency in degrading contaminants. Here, a cobalt-doped cerium oxide catalyst (Co-CeO) was employed to activate calcium sulfite (CaSO) for imidacloprid degradation. The Co-CeO catalyst was characterized by using SEM, BET, XRD, and XPS techniques to analyze its structural and chemical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!