Cell adhesion molecules and downstream growth factor-dependent signaling are critical for brain development and synaptic plasticity, and they have been linked to cognitive function in adult animals. We have previously developed a mimetic peptide (FGL) from the neural cell adhesion molecule (NCAM) that enhances spatial learning and memory in rats. We have now investigated the cellular and molecular basis of this cognitive enhancement, using biochemical, morphological, electrophysiological, and behavioral analyses. We have found that FGL triggers a long-lasting enhancement of synaptic transmission in hippocampal CA1 neurons. This effect is mediated by a facilitated synaptic delivery of AMPA receptors, which is accompanied by enhanced NMDA receptor-dependent long-term potentiation (LTP). Both LTP and cognitive enhancement are mediated by an initial PKC activation, which is followed by persistent CaMKII activation. These results provide a mechanistic link between facilitation of AMPA receptor synaptic delivery and improved hippocampal-dependent learning, induced by a pharmacological cognitive enhancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3283560PMC
http://dx.doi.org/10.1371/journal.pbio.1001262DOI Listing

Publication Analysis

Top Keywords

synaptic delivery
12
cognitive enhancement
12
facilitation ampa
8
ampa receptor
8
receptor synaptic
8
cell adhesion
8
synaptic
5
cognitive
5
delivery molecular
4
molecular mechanism
4

Similar Publications

Tauopathies, a group of neurodegenerative disorders, are characterized by the abnormal aggregation of tau proteins into neurofibrillary tangles (NFTs), driving synaptic dysfunction, neuronal loss, and disease progression through tau aggregate propagation. Graphene quantum dots (GQDs) functionalized with - cysteine ( -GQDs) have shown promise in inhibiting tau aggregation and transmission π-π stacking and electrostatic interactions with tau proteins. However, the non-specific binding of GQDs to various proteins in the physiological environment, such as serum albumin, limits their clinical translation.

View Article and Find Full Text PDF

Xinnaoxin capsule alleviates neuropathological changes and cognitive deficits in Alzheimer's disease mouse model induced by D-galactose and aluminum chloride via reducing neuroinflammation and protecting synaptic proteins.

J Ethnopharmacol

January 2025

Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road, 300072 Tianjin, China. Electronic address:

Ethnopharmacological Relevance: Originally formulated to mitigate high-altitude sickness, Xinnaoxin capsules (XNX) are composed of three traditional Chinese medicines (Rhodiola rosea L., Lycium barbarum L. and Hippophae rhamnoides) with properties of anti-hypoxia, anti-fatigue, and anti-aging.

View Article and Find Full Text PDF

Long non-coding RNA CASC15 enhances learning and memory in mice by promoting synaptic plasticity in hippocampal neurons.

Exploration (Beijing)

December 2024

Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health Fourth Military Medical University Xi'an China.

Alzheimer's disease (AD) is a debilitating systemic disorder that has a detrimental impact on the overall well-being of individuals. Emerging research suggests that long non-coding RNAs play a role in neural development and function. Nevertheless, the precise relationship between lncRNAs and Alzheimer's disease remains uncertain.

View Article and Find Full Text PDF

Functional recovery from brain damage, such as stroke, is a plastic process in the brain. The excitatory glutamate -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) plays a crucial role in neuronal functions, and the synaptic trafficking of AMPAR is a fundamental mechanism underlying synaptic plasticity. We recently identified a collapsin response mediator protein 2 (CRMP2)-binding compound, edonerpic maleate, which augments rehabilitative training-dependent functional recovery from brain damage by facilitating experience-driven synaptic delivery of AMPARs.

View Article and Find Full Text PDF

Synthesis and Characterization of Transferrin and Cell-Penetrating Peptide-Functionalized Liposomal Nanoparticles to Deliver Plasmid ApoE2 and in Mice.

Mol Pharm

January 2025

Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota 58108-6050, United States.

Alzheimer's disease (AD) is a prevalent neurodegenerative condition characterized by the aggregation of amyloid-β plaques and neurofibrillary tangles in the brain, leading to synaptic dysfunction and neuronal degeneration. Recently, new treatment approaches involving drugs such as donanemab and lecanemab have been introduced for AD. However, these drug regimens have been associated with adverse effects, leading to the exploration of gene therapy as a potential treatment option.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!