Human pathogens have evolved to infect vertebrate hosts other than human beings without causing symptoms of the disease, thus permitting them to complete their life cycle and to develop into infectious forms. The identification and management of infected animals are alternatives to control dissemination of the disease and to prevent human illness. In the current study, the potential use of staphylococcal A or streptococcal G proteins was evaluated with enzyme-linked immunosorbent assays (ELISAs) for seroepidemiological studies. Sera were collected from animals that were representative of 23 different Brazilian wild mammals. A high protein A binding rate was observed in all animals, except for the orders Didelphimorphia, Artiodactyla, and Rodentia, in which affinity was medium or low. Affinity for streptococcal G protein was higher in animals of the order Artiodactyla, whereas no streptococcal G protein binding was observed in samples obtained from felines (order Carnivora). Bacterial protein binding to mammalian immunoglobulins was confirmed by immunoblotting. The results suggest that secondary detection systems should be better investigated in ELISA protocols before their implementation in seroepidemiological studies involving wild mammals.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1040638711434322DOI Listing

Publication Analysis

Top Keywords

wild mammals
12
protein binding
12
brazilian wild
8
staphylococcal streptococcal
8
streptococcal proteins
8
seroepidemiological studies
8
streptococcal protein
8
differential reactivity
4
reactivity serum
4
serum immunoglobulins
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!