A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nsi1 plays a significant role in the silencing of ribosomal DNA in Saccharomyces cerevisiae. | LitMetric

Nsi1 plays a significant role in the silencing of ribosomal DNA in Saccharomyces cerevisiae.

Nucleic Acids Res

School of Biological Sciences and Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University, Seoul 151-747, Republic of Korea.

Published: June 2012

In eukaryotic cells, ribosomal DNA (rDNA) forms the basis of the nucleolus. In Saccharomyces cerevisiae, 100-200 copies of a 9.1-kb rDNA repeat exist as a tandem array on chromosome XII. The stability of this highly repetitive array is maintained through silencing. However, the precise mechanisms that regulate rDNA silencing are poorly understood. Here, we report that S. cerevisiae Ydr026c, which we name NTS1 silencing protein 1 (Nsi1), plays a significant role in rDNA silencing. By studying the subcellular localization of 159 nucleolar proteins, we identified 11 proteins whose localization pattern is similar to that of Net1, a well-established rDNA silencing factor. Among these proteins is Nsi1, which is associated with the NTS1 region of rDNA and is required for rDNA silencing at NTS1. In addition, Nsi1 physically interacts with the known rDNA silencing factors Net1, Sir2 and Fob1. The loss of Nsi1 decreases the association of Sir2 with NTS1 and increases histone acetylation at NTS1. Furthermore, Nsi1 contributes to the longevity of yeast cells. Taken together, our findings suggest that Nsi1 is a new rDNA silencing factor that contributes to rDNA stability and lifespan extension in S. cerevisiae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367210PMC
http://dx.doi.org/10.1093/nar/gks188DOI Listing

Publication Analysis

Top Keywords

rdna silencing
24
rdna
10
silencing
9
nsi1 plays
8
plays role
8
ribosomal dna
8
saccharomyces cerevisiae
8
silencing factor
8
nsi1
7
nts1
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!