Airway distensibility appears to be unaffected by airway smooth muscle (ASM) tone, despite the influence of ASM tone on the airway diameter-pressure relationship. This discrepancy may be because the greatest effect of ASM tone on airway diameter-pressure behavior occurs at low transpulmonary pressures, i.e., low lung volumes, which has not been investigated. Our study aimed to determine the contribution of ASM tone to airway distensibility, as assessed via the forced oscillation technique (FOT), across all lung volumes with a specific focus on low lung volumes. We also investigated the accompanying influence of ASM tone on peripheral airway closure and heterogeneity inferred from the reactance versus lung volume relationship. Respiratory system conductance and reactance were measured using FOT across the entire lung volume range in 22 asthma subjects and 19 healthy controls before and after bronchodilator. Airway distensibility (slope of conductance vs. lung volume) was calculated at residual volume (RV), functional residual capacity (FRC), and total lung capacity. At baseline, airway distensibility was significantly lower in subjects with asthma at all lung volumes. After bronchodilator, distensibility significantly increased at RV (64.8%, P < 0.001) and at FRC (61.8%, P < 0.01) in subjects with asthma but not in control subjects. The increased distensibility at RV and FRC in asthma were not associated with the accompanying changes in the reactance versus lung volume relationship. Our findings demonstrate that, at low lung volumes, ASM tone reduces airway distensibility in adults with asthma, independent of changes in airway closure and heterogeneity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.01259.2011 | DOI Listing |
Semin Perinatol
December 2024
Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Neonatal Intensive Care Unit, University of Patras, Patras, Greece. Electronic address:
Non-invasive ventilation (NIV) is a form of respiratory support provided primarily to preterm born infants in an effort to avoid any endotracheal intubation or as a weaning step following invasive ventilation. In the context of the respiratory distress syndrome of the newborn, NIV could target and partially reverse specific pathophysiological phenomena, by improving alveolar recruitment and establishing adequate functional residual capacity. It can also assist in minimizing lung injury by avoiding excessive pressure delivery, which can be harmful for the developing lung.
View Article and Find Full Text PDFFront Physiol
December 2024
Department of Medical Physics and Medical Informatics, University of Szeged, Szeged, Hungary.
Introduction: Cerebral ischemia leads to multiple organ dysfunctions, with the lungs among the most severely affected. Although adverse pulmonary consequences contribute significantly to reduced life expectancy after stroke, the impact of global or focal cerebral ischemia on respiratory mechanical parameters remains poorly understood.
Methods: Rats were randomly assigned to undergo surgery to induce permanent global cerebral ischemia (2VO) or focal cerebral ischemia (MCAO), or to receive a sham operation (SHAM).
S Afr Med J
October 2024
Department of Internal Medicine, Tygerberg Academic Hospital, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
Ann Thorac Surg
October 2024
Department of Thoracic Surgery, Sant'Andrea Hospital, Sapienza University, Rome, Italy.
Background: Resection and reconstruction of the carina infiltrated by non-small cell lung cancer (NSCLC) or an airway tumor is a technically demanding operation allowing oncologic radical treatment. Hereby we report the results of a 20-year experience from a high-volume center.
Methods: Carinal resection was performed in 41 patients for NSCLC (n = 32) or primary airway tumor (n = 9).
Crit Care
October 2024
Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!