Functional characterization of double-knockout mouse sperm lacking SPAM1 and ACR or SPAM1 and PRSS21 in fertilization.

J Reprod Dev

Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan.

Published: December 2012

Mammalian fertilization requires sperm to penetrate the cumulus to reach the oocyte. Although sperm hyaluronidase has long been believed to participate in the penetration process, our previous works revealed that neither of two sperm hyaluronidases, SPAM1 and HYAL5, are essential for fertilization. In this study, we have produced double-knockout mice lacking SPAM1 and either one of two sperm serine proteases, ACR and PRSS21, and characterized the mutant sperm. The SPAM1/ACR- and SPAM1/PRSS21-deficient males were fertile, whereas epididymal sperm of the mutant mice exhibited a reduced capacity to fertilize the oocytes in vitro. Despite normal motility, the ability of sperm to traverse the cumulus matrix was more severely impaired by the loss of SPAM1 and ACR or SPAM1 and PRSS21 than by the loss of only SPAM1. Moreover, SPAM1/ACR- and SPAM1/PRSS21-deficient sperm accumulated on the surface (outer edge) of the cumulus more abundantly than SPAM1-deficient sperm. These results suggest that ACR or PRSS21 or both may function cooperatively with SPAM1 in sperm/cumulus penetration.

Download full-text PDF

Source
http://dx.doi.org/10.1262/jrd.2011-006DOI Listing

Publication Analysis

Top Keywords

sperm
10
spam1
8
lacking spam1
8
spam1 acr
8
acr spam1
8
spam1 prss21
8
acr prss21
8
spam1/acr- spam1/prss21-deficient
8
loss spam1
8
functional characterization
4

Similar Publications

[Paternal inheritance mediated by epigenetic changes in sperms].

Zhonghua Yi Xue Yi Chuan Xue Za Zhi

January 2025

Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410078, China.

Epigenetics is the link between the genome and environment, which can respond to physiological (such as age) or environmental factors (such as diet, stress, and pollution) and induce changes in epigenetic modifications (such as DNA methylation, non-coding RNA, and histone modifications). It can also serve as cellular memory transmitted from generation to generation. Sperm is highly responsive to such environmental changes and has unique epigenetic profiles.

View Article and Find Full Text PDF

Objective: To assess the feasibility of first polar body transfer (PB1T) combined with preimplantation mitochondrial genetic testing for blocking the transmission of a pathogenic mitochondrial DNA 8993T>G mutation.

Methods: A Chinese family affected with Leigh syndrome which had attended the Reproductive Medicine Centre of the First Affiliated Hospital of Anhui Medical University in September 2021 was selected as the study subject. Controlled ovarian hyperstimulation was carried out for the proband after completing the detection of the mitochondrial DNA 8993T>G mutation load among the pedigree members.

View Article and Find Full Text PDF

Male infertility has become an increasingly severe global health issue, with its incidence significantly rising over the past few decades. This paper delves into the crucial role of epigenetics in male reproductive health, focusing particularly on the effects of DNA methylation, histone modifications, chromatin remodeling and non-coding RNAs regulation on spermatogenesis. Exposure to various environmental factors can cause sperm DNA damage, leading to epigenetic abnormalities.

View Article and Find Full Text PDF

Background: Lipid metabolism, one of the three major metabolic processes, plays a crucial role in male fertility, particularly when lipid homeostasis is disrupted. Lipid droplets (LDs), cellular organelles that store lipids primarily in the form of triglycerides and cholesterol esters, serve as central hubs in lipid metabolism.The degradation of LDs is regulated by lipases and lipophagy.

View Article and Find Full Text PDF

[Effect of "Zhibian" (BL54)-toward-"Shuidao" (ST28) acupuncture on reproductive function in mice with asthenozoospermia based on mitochondrial apoptosis].

Zhongguo Zhen Jiu

January 2025

College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu 610075, Sichuan Province, China; Second Clinical College, Shanxi University of CM, Jinzhong 030619.

Objective: To observe the effects of the "Zhibian" (BL54)-toward-"Shuidao" (ST28) acupuncture on key regulatory factors during mitochondrial apoptosis of testicular tissue in asthenozoospermia mice, and explore the potential mechanism of the protective effect of acupuncture on reproductive function.

Methods: Thirty C57BL/6 male mice were randomly divided into a blank group, a model group and an acupuncture group, 10 mice in each group. In the model and the acupuncture groups, the intraperitoneal injection of cyclophosphamide (30 mg•kg•d) was delivered for 7 days to prepare the asthenozoospermia model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!