Silenced chromatin domains are restricted to specific regions. Eukaryotic chromosomes are organized into discrete domains delimited by domain boundaries. From approximately 6,000 genes in Saccharomyces cerevisiae, we previously isolated 55 boundary genes. In this study, we focus on the molecular function of one of boundary genes, YCR076C/FUB1 (function of boundary), whose function has not been clearly defined in vivo. Biochemical analysis of Fub1p revealed that it interacted with multiple subunits of the 20S proteasome core particle (20S CP). To further clarify the functional link between Fub1p and proteasome, several proteasome mutants were analyzed. Although only 20S CP subunits were isolated as Fub1p interactors, a genetic interaction was also observed for component of 19S regulatory particle (19S RP) suggesting involvement of Fub1p with the whole proteasome. We also analyzed the mechanism of boundary establishment by using proteasome composition factor-deficient strains. Deletion of pre9 and ump1, whose products have effects on the 20S CP, resulted in a decrease in boundary function. Domain analyses of Fub1p identified a minimum functional domain in the C terminus that was essential for boundary establishment and showed a limited sequence homology to the human PSMF1, which is known to inhibit proteasome activity. Finally, boundary assay showed that human PSMF1 also exhibited boundary establishment activity in yeast. Our results defined the functional correlation between Fub1p and PSMF1.

Download full-text PDF

Source
http://dx.doi.org/10.1266/ggs.86.305DOI Listing

Publication Analysis

Top Keywords

boundary establishment
12
boundary
9
isolated boundary
8
boundary genes
8
function boundary
8
boundary function
8
fub1p proteasome
8
human psmf1
8
fub1p
7
proteasome
7

Similar Publications

Objective: Photopolymerized resin composites are widely used as dental filling materials. However, the shrinkage stress generated during photopolymerization can lead to marginal microcracks and eventual restoration failure. Accurate assessment of the stress evolution in dental restorations, particularly in complex cavity geometries, is critical for improving the performance and longevity of the dental filling materials.

View Article and Find Full Text PDF

Anthropogenic emissions of non-CO greenhouse gases, such as low-concentration coal mine methane (cCH < 30 vol%), have a significant impact on global warming. The main component of coal mine methane is methane (CH), which is both a greenhouse gas and a high-quality clean energy gas. To study the combustion and heat transfer reactions of low-concentration coal mine methane in a catalytic oxidation device, a numerical simulation approach was employed to establish a model of the catalytic oxidation device that includes periodic boundary conditions, methane combustion mechanisms, and turbulent-laminar flow characteristics.

View Article and Find Full Text PDF

In this paper, the mathematical model of the aviation pressure servo valve controlled actuator system(APSVCAS) considering nonlinearity is established based on a jet pipe pressure servo valve in this article. And the dynamic characteristics and stability boundary of APSVCAS are analyzed, which provides theoretical guidance for the actual composition and the determination of parameters. Firstly, a jet-tube two-stage pressure servo valve for aviation hydraulic system is designed, and an accurate model of APSVCAS is established considering multiple nonlinear factors.

View Article and Find Full Text PDF

Reversible multivalent carrier redox exceeding intercalation capacity boundary.

Nat Commun

January 2025

Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.

Compared with widely established monovalent-ion batteries, aqueous multivalent-ion batteries promise higher capacity release by achieving multiple electron-transfer events per ion intercalation in the host material. Despite plausibility, this high-capacity dream is untenable with the total tolerable redox charge-transfer limit of the host material for all carrier species equally, which is historically assumed to depend on the material rather than the guest carrier itself, and the kinetic hysteresis induced by larger charge/radius ratios induced kinetic hysteresis further enlarges the divide. Herein, we report that copper carrier redox in vanadium sulfide (VS) exceeds the intrinsic intercalation capacity boundary, with the highest capacity release as 675 mAh g at 0.

View Article and Find Full Text PDF

Spatiotemporal Spectroscopy of Fast Excited-State Diffusion in 2D Covalent Organic Framework Thin Films.

J Am Chem Soc

January 2025

Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany.

Covalent organic frameworks (COFs), crystalline and porous conjugated structures, are of great interest for sustainable energy applications. Organic building blocks in COFs with suitable electronic properties can feature strong optical absorption, whereas the extended crystalline network can establish a band structure enabling long-range coherent transport. This peculiar combination of both molecular and solid-state materials properties makes COFs an interesting platform to study and ultimately utilize photoexcited charge carrier diffusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!