Alzheimer's disease (AD) is one key medical challenge of the aging society and despite a great amount of effort and a huge collection of acquired data on molecular mechanisms that are associated with the onset and progression of this devastating disorder, no causal therapy is in sight. The two main hypotheses of AD, the amyloid cascade hypothesis and the Tau hypothesis, are still in the focus of AD research. With aging as the accepted main risk factor of the most important non familial and late onset sporadic forms of AD, it is now mandatory to discuss more intensively aspects of cellular aging and aging biochemistry and its impact on neurodegeneration. Since aging is accompanied by changes in cellular protein homeostasis and an increasing demand for protein degradation, aspects of protein folding, misfolding, refolding and, importantly, protein degradation need to be linked to AD pathogenesis. This is the purpose of this short review.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443483 | PMC |
http://dx.doi.org/10.1007/s12035-012-8246-0 | DOI Listing |
Trends Pharmacol Sci
January 2025
Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China. Electronic address:
The process by which cells translate external mechanical cues into intracellular biochemical signals involves intricate mechanisms that remain unclear. In recent years, research into post-translational modifications (PTMs) has offered valuable insights into this field, spotlighting protein prenylation as a crucial mechanism in cellular mechanotransduction and various human diseases. Protein prenylation, which involves the covalent attachment of isoprenoid groups to specific substrate proteins, profoundly affects the functions of key mechanotransduction proteins such as Rho, Ras, and lamins.
View Article and Find Full Text PDFPharmacol Res
January 2025
State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China. Electronic address:
Numerous studies conducted in recent years indicate that mammalian E3 ubiquitin ligases serve as key regulators in the maintenance of cellular homeostasis by targeting the ubiquitination of substrate proteins and activating downstream signaling pathways. SYVN1, an E3 ubiquitin ligase, is characterized by its significant functions in regulating various biological processes, including molecular mechanisms related to gene expression, signaling pathways, and cell death, among others. Consequently, SYVN1 plays a crucial role in both normal human physiology and the pathogenesis of various diseases, such as oncogenesis, cardiovascular disorders, immune regulation, skeletal anomalies, and neurological diseases.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067. Electronic address:
Iron accumulation and mitochondrial dysfunction in astroglia are reported in Parkinson's disease (PD). Astroglia control iron availability in neurons in which dopamine (DA) synthesis is affected in PD. Despite their intimate relationship the role of DA in astroglial iron homeostasis is limited.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China. Electronic address:
Deltamethrin (DM), a broad-spectrum insecticide, is widely used in the world. It can exert direct action on the central nervous system to produce neurotoxicity. Exposure to DM can lead to iron metabolism disorder, oxidative stress and learning and memory dysfunction.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China; State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, P.R. China. Electronic address:
Menin is a scaffold protein encoded by the Men1 gene, and it interacts with a variety of chromatin regulators to activate or repress cellular processes. The potential importance of menin in immune regulation remains unclear. Here, we report that myeloid deletion of Men1 results in the development of spontaneous pulmonary alveolar proteinosis (PAP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!