AI Article Synopsis

  • α-Synuclein (α-syn) is a presynaptic protein linked to Parkinson's disease, where its overexpression in the substantia nigra causes motor impairments primarily associated with the wild-type form.
  • Increased wild-type α-syn leads to reduced dopamine release in the striatum and changes at the ultrastructural level, such as fewer dopaminergic vesicles and synaptic contacts, despite some loss of dopaminergic neurons.
  • The membrane-binding capabilities of α-syn are crucial, as mutant forms lacking these properties do not significantly impact dopamine release or motor function, highlighting the relationship between α-syn's structure and its effects on neurotransmission.

Article Abstract

α-Synuclein (α-syn) is a presynaptic protein present at most nerve terminals, but its function remains largely unknown. The familial forms of Parkinson's disease associated with multiplications of the α-syn gene locus indicate that overabundance of this protein might have a detrimental effect on dopaminergic transmission. To investigate this hypothesis, we use adeno-associated viral (AAV) vectors to overexpress human α-syn in the rat substantia nigra. Moderate overexpression of either wild-type (WT) or A30P α-syn differs in the motor phenotypes induced, with only the WT form generating hemiparkinsonian impairments. Wild-type α-syn causes a reduction of dopamine release in the striatum that exceeds the loss of dopaminergic neurons, axonal fibers, and the reduction in total dopamine. At the ultrastructural level, the reduced dopamine release corresponds to a decreased density of dopaminergic vesicles and synaptic contacts in striatal terminals. Interestingly, the membrane-binding-deficient A30P mutant does neither notably reduce dopamine release nor it cause ultrastructural changes in dopaminergic axons, showing that α-syn's membrane-binding properties are critically involved in the presynaptic defects. To further determine if the affinity of the protein for membranes determines the extent of motor defects, we compare three forms of α-syn in conditions leading to pronounced degeneration. While membrane-binding α-syns (wild-type and A53T) induce severe motor impairments, an N-terminal deleted form with attenuated affinity for membranes is inefficient in inducing motor defects. Overall, these results demonstrate that α-syn overabundance is detrimental to dopamine neurotransmission at early stages of the degeneration of nigrostriatal dopaminergic axons.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00401-012-0963-yDOI Listing

Publication Analysis

Top Keywords

dopamine release
16
dopaminergic axons
8
motor defects
8
α-syn
7
dopamine
6
motor
5
dopaminergic
5
nigrostriatal overabundance
4
overabundance α-synuclein
4
α-synuclein leads
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!