We have demonstrated previously that Bcl-2 and Bcl-2Δ21, a C-terminally truncated Bcl-2 sequence, inactivate SERCA (sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase) 1 in isolated SR (sarcoplasmic reticulum), accompanied by a translocation from CRDs (caveolae-related domains) of the SR. In the present study, we obtained evidence for the interaction of Bcl-2 with SERCA2b in C2C12 myoblasts and HEK (human embryonic kidney)-293 cells. Bcl-2 and SERCA2b co-immunoprecipitated from lysate and microsomal fractions of Bcl-2-overexpressing cells. However, Bcl-2 overexpression resulted only in a slight translocation from the CRDs and no significant SERCA inactivation. In isolated HEK-293 cell microsomes, incubation with Bcl-2Δ21 afforded SERCA2b inactivation and some translocation. HSP (heat-shock protein) 70, HSP90, HSP27 and α-crystallin attenuated Bcl-2Δ21-dependent SERCA2b inactivation. An in vitro mechanistic study with the SERCA1 isoform shows that HSP70 (i) protects SERCA1 from the inactivation by Bcl-2Δ21, (ii) inhibits SERCA1 translocation from CRD fractions, and (iii) prevents the Bcl-2Δ21-dependent loss of FITC labelling. Our data demonstrate that the mechanism of SERCA inactivation by Bcl-2 established in vitro for the SERCA1 isoform can be extended to the main housekeeping SERCA2b isoform, and that functional interactions of SERCA2b and Bcl-2 in the cell may be modulated by HSP70 and other chaperones and stress-regulated proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736812 | PMC |
http://dx.doi.org/10.1042/BJ20111114 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!