Selective probe of the morphology and local vibrations at carbon nanoasperities.

J Chem Phys

Research Center for Exotic Nanocarbons (JST), Shinshu University, 4-17-1, Wakasato, Nagano-city 380-8553, Japan.

Published: February 2012

We introduce a way to selectively probe local vibration modes at nanostructured asperities such as tips of carbon nanohorns. Our observations benefit from signal amplification in surface-enhanced Raman scattering (SERS) at sites near a silver surface. We observe nanohorn tip vibration modes in the range 200-500 cm(-1), which are obscured in regular Raman spectra. Ab initio density functional calculations assign modes in this frequency range to local vibrations at the nanohorn cap resembling the radial breathing mode of fullerenes. Careful interpretation of our SERS spectra indicates presence of caps with 5 or 6 pentagons, which are chemically the most active sites. Changes in the peak intensities and frequencies with time indicate that exposure to laser irradiation may cause structural rearrangements at the cap.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3682771DOI Listing

Publication Analysis

Top Keywords

local vibrations
8
vibration modes
8
selective probe
4
probe morphology
4
morphology local
4
vibrations carbon
4
carbon nanoasperities
4
nanoasperities introduce
4
introduce selectively
4
selectively probe
4

Similar Publications

In this work, we investigate anharmonic vibrational polaritons formed due to strong light-matter interactions in an optical cavity between radiation modes and anharmonic vibrations beyond the long-wavelength limit. We introduce a conceptually simple description of light-matter interactions, where spatially localized cavity radiation modes couple to localized vibrations. Within this theoretical framework, we employ self-consistent phonon theory and vibrational dynamical mean-field theory to efficiently simulate momentum-resolved vibrational-polariton spectra, including effects of anharmonicity.

View Article and Find Full Text PDF

Stable Sb exhibits a rhombohedral structure, often referred to as distorted primitive cubic, with each Sb atom having three short and three longer first neighbor bonds. However, this crystal structure can also be interpreted as being layered, putting emphasis on only three short first neighbor bonds. Therefore, temperature-dependent extended X-ray absorption fine structure (EXAFS) spectroscopy is carried out at the Sb K-edge in order to obtain more detailed information on local structural and vibrational properties.

View Article and Find Full Text PDF

Conformationally Adaptable Extractant Flexes Strong Lanthanide Reverse-Size Selectivity.

J Am Chem Soc

January 2025

Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

Chemical selectivity is traditionally understood in the context of rigid molecular scaffolds with precisely defined local coordination and chemical environments that ultimately facilitate a given transformation of interest. By contrast, nature leverages dynamic structures and strong coupling to enable specific interactions with target species in otherwise complex media. Taking inspiration from nature, we demonstrate unconventional selectivity in the solvent extraction of light over heavy lanthanides using a conformationally flexible ligand called octadecyl acyclopa (ODA).

View Article and Find Full Text PDF

Spectroscopic Signatures of Phonon Character in Molecular Electron Spin Relaxation.

ACS Cent Sci

December 2024

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.

Spin-lattice relaxation constitutes a key challenge for the development of quantum technologies, as it destroys superpositions in molecular quantum bits (qubits) and magnetic memory in single molecule magnets (SMMs). Gaining mechanistic insight into the spin relaxation process has proven challenging owing to a lack of spectroscopic observables and contradictions among theoretical models. Here, we use pulse electron paramagnetic resonance (EPR) to profile changes in spin relaxation rates ( ) as a function of both temperature and magnetic field orientation, forming a two-dimensional data matrix.

View Article and Find Full Text PDF

In-band full-duplex communication has the potential to double the wireless channel capacity. However, how to efficiently transform the full-duplex gain at the physical layer into network throughput improvement is still a challenge, especially in dynamic communication environments. This paper presents a reinforcement learning-based full-duplex (RLFD) medium access control (MAC) protocol for wireless local-area networks (WLANs) with full-duplex access points.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!