Coke formation and carbon atom economy of methanol-to-olefins reaction.

ChemSusChem

Dalian National Laboratory for Clean Energy, National Engineering Laboratory for Methanol-to-Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, PR China.

Published: May 2012

The methanol-to-olefins (MTO) process is becoming the most important non-petrochemical route for the production of light olefins from coal or natural gas. Maximizing the generation of the target products, ethene and propene, and minimizing the production of byproducts and coke, are major considerations in the efficient utilization of the carbon resource of methanol. In the present work, the heterogeneous catalytic conversion of methanol was evaluated by performing simultaneous measurements of the volatile products generated in the gas phase and the confined coke deposition in the catalyst phase. Real-time and complete reaction profiles were plotted to allow the comparison of carbon atom economy of methanol conversion over the catalyst SAPO-34 at varied reaction temperatures. The difference in carbon atom economy was closely related with the coke formation in the SAPO-34 catalyst. The confined coke compounds were determined. A new type of confined organics was found, and these accounted for the quick deactivation and low carbon atom economy under low-reaction-temperature conditions. Based on the carbon atom economy evaluation and coke species determination, optimized operating conditions for the MTO process are suggested; these conditions guarantee high conversion efficiency of methanol.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201100528DOI Listing

Publication Analysis

Top Keywords

carbon atom
20
atom economy
20
coke formation
8
mto process
8
confined coke
8
coke
6
carbon
6
atom
5
economy
5
formation carbon
4

Similar Publications

Secondary Coordination Effects of Adjacent Metal Center in Metal-Nitrogen-Carbon Improve Scaling Relation of Oxygen Electrocatalysis.

J Phys Chem Lett

January 2025

Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.

Heterogenous single-atom catalysts (SACs) are reminiscent of homogeneous catalysts because of the similarity of structural motif of active sites, showing the potential of using the advantage of homogeneous catalysts to tackle challenges in hetereogenous catalysis. In heterogeneous oxygen electrocatalysis, the homogeneity of adsorption patterns of reaction intermediates leads to scaling relationships that limit their activities. In contrast, homogeneous catalysts can circumvent such limits by selectively altering the adsorption of intermediates through secondary coordination effects (SCEs).

View Article and Find Full Text PDF

Learning from nature has garnered significant attention in the scientific community for its potential to inspire creative solutions in material or catalyst design. The study reports a biomimetic single selenium (Se) site-modified carbon (C) moiety that retains the unique reactivity of selenoenzyme with peroxides, aiming to selectively catalyze the oxygen reduction reaction (ORR). The as-designed Se-C demonstrates nearly 100% 4-electron selectivity, evidenced by 0.

View Article and Find Full Text PDF

The electrocatalytic synthesis of multicarbon compounds from CO is a promising method for storing renewable electricity and addressing global CO issues. Single-atom catalysts are promising candidates for CO reduction, but producing high-value multicarbon (C) products using a single-atom structure remains a significant challenge. In this study, a fluorine doping strategy is proposed to facilitate the reconstruction of isolated Cu atoms, promoting multicarbon generation.

View Article and Find Full Text PDF

A nitrogen-coordinated Fe single-atom catalyst (SA Fe-N/C) is synthesized using a homogeneous ethanol-based dissolution system with bamboo kraft lignin serving as the carbon source. Uniformly dispersed Fe atoms with an interatomic distance of less than 2 Å throughout the SA Fe-N/C structure are revealed through X-ray absorption spectral analysis and HAADF-STEM images, which possessed a high Fe loading of 2.69%.

View Article and Find Full Text PDF

Non-metallic iodine single-atom catalysts with optimized electronic structures for efficient Fenton-like reactions.

Nat Commun

January 2025

State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.

In this study, we introduce a highly effective non-metallic iodine single-atom catalyst (SAC), referred to as I-NC, which is strategically confined within a nitrogen-doped carbon (NC) scaffold. This configuration features a distinctive C-I coordination that optimizes the electronic structure of the nitrogen-adjacent carbon sites. As a result, this arrangement enhances electron transfer from peroxymonosulfate (PMS) to the active sites, particularly the electron-deficient carbon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!